Suppr超能文献

用于神经接口的基于微槽电活性复合膜的地形引导

Topographic guidance based on microgrooved electroactive composite films for neural interface.

作者信息

Shi Xiaoyao, Xiao Yinghong, Xiao Hengyang, Harris Gary, Wang Tongxin, Che Jianfei

机构信息

Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China.

College of Dentistry, Howard University, Washington, DC 20059, USA; Collaborative Innovation Center for Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China.

出版信息

Colloids Surf B Biointerfaces. 2016 Sep 1;145:768-776. doi: 10.1016/j.colsurfb.2016.05.086. Epub 2016 May 28.

Abstract

Topographical features are essential to neural interface for better neuron attachment and growth. This paper presents a facile and feasible route to fabricate an electroactive and biocompatible micro-patterned Single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) composite films (SWNT/PEDOT) for interface of neural electrodes. The uniform SWNT/PEDOT composite films with nanoscale pores and microscale grooves significantly enlarged the electrode-electrolyte interface, facilitated ion transfer within the bulk film, and more importantly, provided topology cues for the proliferation and differentiation of neural cells. Electrochemical analyses indicated that the introduction of PEDOT greatly improved the stability of the SWNT/PEDOT composite film and decreased the electrode/electrolyte interfacial impedance. Further, in vitro culture of rat pheochromocytoma (PC12) cells and MTT testing showed that the grooved SWNT/PEDOT composite film was non-toxic and favorable to guide the growth and extension of neurite. Our results demonstrated that the fabricated microscale groove patterns were not only beneficial in the development of models for nervous system biology, but also in creating therapeutic approaches for nerve injuries.

摘要

拓扑特征对于神经接口至关重要,有助于实现更好的神经元附着和生长。本文提出了一种简便可行的方法,用于制备具有电活性和生物相容性的微图案化单壁碳纳米管/聚(3,4-乙撑二氧噻吩)复合膜(SWNT/PEDOT),用于神经电极接口。具有纳米级孔隙和微米级凹槽的均匀SWNT/PEDOT复合膜显著扩大了电极-电解质界面,促进了膜内的离子转移,更重要的是,为神经细胞的增殖和分化提供了拓扑线索。电化学分析表明,PEDOT的引入大大提高了SWNT/PEDOT复合膜的稳定性,并降低了电极/电解质界面阻抗。此外,大鼠嗜铬细胞瘤(PC12)细胞的体外培养和MTT测试表明,带凹槽的SWNT/PEDOT复合膜无毒,有利于引导神经突的生长和延伸。我们的结果表明,所制备的微尺度凹槽图案不仅有利于神经系统生物学模型的开发,而且有利于创造神经损伤的治疗方法。

相似文献

1
Topographic guidance based on microgrooved electroactive composite films for neural interface.
Colloids Surf B Biointerfaces. 2016 Sep 1;145:768-776. doi: 10.1016/j.colsurfb.2016.05.086. Epub 2016 May 28.
2
A feasible way for the fabrication of single walled carbon nanotube/polypyrrole composite film with controlled pore size for neural interface.
Colloids Surf B Biointerfaces. 2015 Feb 1;126:138-45. doi: 10.1016/j.colsurfb.2014.12.004. Epub 2014 Dec 10.
4
Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
Biomaterials. 2011 Aug;32(24):5551-7. doi: 10.1016/j.biomaterials.2011.04.051. Epub 2011 May 20.
5
Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces.
Biomaterials. 2010 Jul;31(19):5169-81. doi: 10.1016/j.biomaterials.2010.03.022. Epub 2010 Apr 10.
7
In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
Biosensors (Basel). 2015 Oct 13;5(4):618-46. doi: 10.3390/bios5040618.
8
Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.
Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):273-9. doi: 10.1016/j.colsurfb.2011.05.028. Epub 2011 May 23.

引用本文的文献

1
Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance.
Front Neurosci. 2024 Jul 24;18:1425226. doi: 10.3389/fnins.2024.1425226. eCollection 2024.
2
Nano-Biomaterials for Retinal Regeneration.
Nanomaterials (Basel). 2021 Jul 22;11(8):1880. doi: 10.3390/nano11081880.
3
Self-Assembling Hydrogel Structures for Neural Tissue Repair.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4136-4163. doi: 10.1021/acsbiomaterials.1c00030. Epub 2021 Mar 29.
4
A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
Adv Healthc Mater. 2019 Oct;8(19):e1900558. doi: 10.1002/adhm.201900558. Epub 2019 Aug 28.
5
Micro/Nano Technologies for High-Density Retinal Implant.
Micromachines (Basel). 2019 Jun 22;10(6):419. doi: 10.3390/mi10060419.
6
Nano-Architectural Approaches for Improved Intracortical Interface Technologies.
Front Neurosci. 2018 Jul 17;12:456. doi: 10.3389/fnins.2018.00456. eCollection 2018.
7
Impact of nanoparticles on neuron biology: current research trends.
Int J Nanomedicine. 2018 May 9;13:2767-2776. doi: 10.2147/IJN.S165675. eCollection 2018.

本文引用的文献

1
Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
Acta Biomater. 2016 Mar 1;32:57-67. doi: 10.1016/j.actbio.2015.12.022. Epub 2015 Dec 12.
4
Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.
Biomaterials. 2015 Mar;44:55-70. doi: 10.1016/j.biomaterials.2014.12.009. Epub 2015 Jan 12.
5
Nanotopography enhanced mobility determines mesenchymal stem cell distribution on micropatterned semiconductors bearing nanorough areas.
Colloids Surf B Biointerfaces. 2015 Feb 1;126:146-53. doi: 10.1016/j.colsurfb.2014.11.047. Epub 2014 Dec 16.
6
A feasible way for the fabrication of single walled carbon nanotube/polypyrrole composite film with controlled pore size for neural interface.
Colloids Surf B Biointerfaces. 2015 Feb 1;126:138-45. doi: 10.1016/j.colsurfb.2014.12.004. Epub 2014 Dec 10.
7
Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.
J Biomed Mater Res A. 2015 Jun;103(6):2126-32. doi: 10.1002/jbm.a.35344. Epub 2014 Oct 24.
8
Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.
Biosens Bioelectron. 2015 May 15;67:450-7. doi: 10.1016/j.bios.2014.09.004. Epub 2014 Sep 6.
9
Cochlear implants.
Curr Biol. 2014 Sep 22;24(18):R878-R884. doi: 10.1016/j.cub.2014.06.053.
10
Electrical stimuli in the central nervous system microenvironment.
Annu Rev Biomed Eng. 2014 Jul 11;16:397-430. doi: 10.1146/annurev-bioeng-121813-120655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验