Suppr超能文献

胺功能化聚吡咯:具有内在细胞黏附性的导电聚合物。

Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

作者信息

Lee Jae Y, Schmidt Christine E

机构信息

Department of Chemical Engineering, The University of Texas at Austin, Texas, USA; School of Materials Science and Engineering, Gwangju Institute of Science and Engineering, Gwangju, South Korea.

出版信息

J Biomed Mater Res A. 2015 Jun;103(6):2126-32. doi: 10.1002/jbm.a.35344. Epub 2014 Oct 24.

Abstract

Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs.

摘要

导电聚合物(CPs)已被公认为是能够与生物系统进行电通信的新型生物材料。就其组织工程应用而言,CPs已被改性以促进细胞黏附,从而改善生物材料与细胞/组织之间的相互作用。改善细胞黏附的传统方法包括用生物分子对CPs进行表面改性,如细胞黏附蛋白和聚阳离子聚合物的物理吸附,或它们的化学固定;然而,这些方法需要用昂贵的生物分子进行额外的多步改性。在本研究中,作为这种额外生物分子处理的一种简单有效的替代方法,我们合成了胺功能化聚吡咯(APPy),其在生理条件下固有地呈现支持细胞黏附的正电荷。与常规聚吡咯(PPy)均聚物相比,合成的APPy在适度范围内提供电活性和亲水表面。在血清和无血清条件下,与PPy均聚物对照相比,APPy均表现出人皮肤成纤维细胞和雪旺细胞的优异附着。此外,雪旺细胞在APPy共聚物上的黏附至少与在聚-L-赖氨酸处理的PPy对照上的黏附相似。我们的结果表明,胺功能化CP底物将有助于实现良好的细胞黏附,并可能对各种细胞进行电刺激。此外,CPs上存在的胺功能可以进一步作为一个新颖且灵活的平台,用于化学连接各种生物活性分子,如生长因子、抗体和化学药物。

相似文献

1
Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.
J Biomed Mater Res A. 2015 Jun;103(6):2126-32. doi: 10.1002/jbm.a.35344. Epub 2014 Oct 24.
2
Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion.
Biomacromolecules. 2006 Jun;7(6):1692-5. doi: 10.1021/bm060220q.
4
Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin.
J Biomed Mater Res A. 2010 Jan;92(1):221-31. doi: 10.1002/jbm.a.32357.
5
Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.
J Biomed Mater Res A. 2010 Apr;93(1):164-74. doi: 10.1002/jbm.a.32511.
6
Biocompatibility implications of polypyrrole synthesis techniques.
Biomed Mater. 2008 Sep;3(3):034124. doi: 10.1088/1748-6041/3/3/034124. Epub 2008 Sep 3.
7
Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity.
Macromol Rapid Commun. 2014 Feb;35(3):350-4. doi: 10.1002/marc.201300761. Epub 2013 Dec 13.
8
Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
Acta Biomater. 2018 Oct 15;80:258-268. doi: 10.1016/j.actbio.2018.09.035. Epub 2018 Sep 25.
10
Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth.
J Biomed Mater Res A. 2014 Aug;102(8):2554-64. doi: 10.1002/jbm.a.34925. Epub 2013 Sep 2.

引用本文的文献

1
Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing.
Adv Sci (Weinh). 2025 May;12(18):e2416267. doi: 10.1002/advs.202416267. Epub 2025 Apr 7.
2
{CoO} Cubanes in a conducting polymer matrix as bio-inspired molecular oxygen evolution catalysts.
Nat Commun. 2024 Sep 29;15(1):8432. doi: 10.1038/s41467-024-52514-z.
3
Evaluating polymeric biomaterials to improve next generation wound dressing design.
Biomater Res. 2022 Oct 1;26(1):50. doi: 10.1186/s40824-022-00291-5.
5
Long-term adherence of human brain cells in vitro is enhanced by charged amine-based plasma polymer coatings.
Stem Cell Reports. 2022 Mar 8;17(3):489-506. doi: 10.1016/j.stemcr.2022.01.013. Epub 2022 Feb 17.
6
Redox Polymers for Tissue Engineering.
Front Med Technol. 2021 May 24;3:669763. doi: 10.3389/fmedt.2021.669763. eCollection 2021.
7
Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering.
Nanomicro Lett. 2021 Dec 2;14(1):1. doi: 10.1007/s40820-021-00751-y.
8
Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells.
Adv Healthc Mater. 2022 Apr;11(7):e2101577. doi: 10.1002/adhm.202101577. Epub 2021 Dec 16.
9
Topographic guidance based on microgrooved electroactive composite films for neural interface.
Colloids Surf B Biointerfaces. 2016 Sep 1;145:768-776. doi: 10.1016/j.colsurfb.2016.05.086. Epub 2016 May 28.

本文引用的文献

1
Schwann cell response on polypyrrole substrates upon electrical stimulation.
Acta Biomater. 2014 Jun;10(6):2423-33. doi: 10.1016/j.actbio.2014.01.030. Epub 2014 Feb 8.
2
Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.
Tissue Eng Part A. 2014 Feb;20(3-4):494-506. doi: 10.1089/ten.TEA.2013.0012. Epub 2013 Dec 11.
3
Biomimetic conducting polymer-based tissue scaffolds.
Curr Opin Biotechnol. 2013 Oct;24(5):847-54. doi: 10.1016/j.copbio.2013.03.011. Epub 2013 Apr 8.
4
Surface modification of the conducting polymer, polypyrrole, via affinity peptide.
J Biomed Mater Res A. 2013 May;101(5):1464-71. doi: 10.1002/jbm.a.34435. Epub 2012 Nov 5.
5
Nanobionics: the impact of nanotechnology on implantable medical bionic devices.
Nanoscale. 2012 Aug 7;4(15):4327-47. doi: 10.1039/c2nr30758h. Epub 2012 Jun 14.
6
The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs.
Biomaterials. 2012 Sep;33(26):6132-9. doi: 10.1016/j.biomaterials.2012.05.032. Epub 2012 Jun 6.
7
Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing.
Biomaterials. 2011 Oct;32(30):7309-17. doi: 10.1016/j.biomaterials.2011.06.047. Epub 2011 Jul 13.
8
Review paper: progress in the field of conducting polymers for tissue engineering applications.
J Biomater Appl. 2011 Jul;26(1):3-84. doi: 10.1177/0885328211402704. Epub 2011 Jun 16.
9
Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces.
Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):189-97. doi: 10.1016/j.colsurfb.2011.02.028. Epub 2011 Feb 26.
10
Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein.
Biomaterials. 2011 May;32(15):3822-31. doi: 10.1016/j.biomaterials.2011.01.053. Epub 2011 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验