Shi Zhaoyue, Rogers Baxter P, Chen Li Min, Morgan Victoria L, Mishra Arabinda, Wilkes Don M, Gore John C
Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.
Hum Brain Mapp. 2016 Nov;37(11):3897-3910. doi: 10.1002/hbm.23284.
Variations over time in resting-state correlations in blood oxygenation level-dependent (BOLD) signals from different cortical areas may indicate changes in brain functional connectivity. However, apparent variations over time may also arise from stationary signals when the sample duration is finite. Recently, a vector autoregressive (VAR) null model has been proposed to simulate real functional magnetic resonance imaging (fMRI) data, which provides a robust stationary model for identifying possible temporal dynamic changes in functional connectivity. In this work, we propose a simpler model that uses a filtered stationary dataset. The filtered stationary model generates statistically stationary time series from random data with a single prescribed correlation coefficient that is calculated as the average over the entire time series. In addition, we propose a dynamic model, which is better able to replicate real fMRI connectivity, estimated from monkey brain studies, than the two stationary models. We compare simulated results using these three models with the behavior of primary somatosensory cortex (S1) networks in anesthetized squirrel monkeys at high field (9.4 T), using a sliding window correlation analysis. We found that at short window sizes, both stationary models reproduced the distribution of correlations of real signals well, but at longer window sizes, a dynamic model reproduced the distribution of correlations of real signals better than the stationary models. While stationary models replicate several features of real data, a close representation of the behavior of resting-state data acquired from somatosensory cortex of non-human primates is obtained only when a dynamic correlation is introduced, suggesting dynamic variations in connectivity are real. Hum Brain Mapp 37:3897-3910, 2016. © 2016 Wiley Periodicals, Inc.
不同皮层区域血氧水平依赖(BOLD)信号静息态相关性随时间的变化可能表明大脑功能连接性的改变。然而,当样本持续时间有限时,固定信号也可能导致随时间出现明显的变化。最近,有人提出了一种向量自回归(VAR)零模型来模拟真实的功能磁共振成像(fMRI)数据,该模型为识别功能连接性中可能的时间动态变化提供了一个稳健的固定模型。在这项工作中,我们提出了一个更简单的模型,该模型使用经过滤波的固定数据集。经过滤波的固定模型从具有单个规定相关系数的随机数据中生成统计上固定的时间序列,该相关系数是作为整个时间序列的平均值计算得出的。此外,我们还提出了一个动态模型,与两个固定模型相比,该模型能更好地复制从猴脑研究中估计出的真实fMRI连接性。我们使用滑动窗口相关分析,将这三种模型的模拟结果与高场(9.4 T)麻醉松鼠猴的初级体感皮层(S1)网络的行为进行了比较。我们发现,在短窗口大小下,两个固定模型都能很好地再现真实信号相关性的分布,但在长窗口大小下,动态模型比固定模型能更好地再现真实信号相关性的分布。虽然固定模型复制了真实数据的几个特征,但只有引入动态相关性时,才能获得从非人类灵长类动物体感皮层获取的静息态数据行为的紧密表示,这表明连接性的动态变化是真实存在的。《人类大脑图谱》37:3897 - 3910,2016年。© 2016威利期刊公司。