Suppr超能文献

使用分层观测模型对动态静息态功能连接进行统计推断。

Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

作者信息

Sojoudi Alireza, Goodyear Bradley G

机构信息

Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.

Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.

出版信息

Hum Brain Mapp. 2016 Dec;37(12):4566-4580. doi: 10.1002/hbm.23329. Epub 2016 Jul 28.

Abstract

Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc.

摘要

血氧水平依赖性功能磁共振成像(BOLD fMRI)信号的自发波动在执行相似功能的脑区之间高度同步。这为研究功能网络提供了一种方法;然而,大多数分析技术假定功能连接随时间保持恒定。在神经疾病中,功能连接可能高度可变,这种假设可能存在问题。最近,已经提出了几种方法来确定成像过程中功能连接强度的瞬间变化(即所谓的动态连接性)。本文提出了一种基于分层观察建模方法的新型分析框架,以允许对动态连接性的存在进行统计推断。描述了一个由fMRI信号的重叠滑动窗口组成的两级线性模型,并考虑了重叠窗口并非相互独立这一事实。为了测试该方法,合成了数据集,其中功能连接要么是恒定的(显著或不显著),要么由外部输入进行调制。与滑动窗口相关分析相比,该方法成功地确定了与调制同步的功能连接的统计显著性,并且在检测具有可变连接性的区域时表现出更高的灵敏度和特异性。对于真实数据,该技术具有更高的可重复性,并且比滑动窗口相关分析提供了更具区分性的动态连接性估计。《人类大脑图谱》37:4566 - 4580,2016年。© 2016威利期刊公司。

相似文献

9
Dynamic functional connectivity of neurocognitive networks in children.儿童神经认知网络的动态功能连接性
Hum Brain Mapp. 2017 Jan;38(1):97-108. doi: 10.1002/hbm.23346. Epub 2016 Aug 18.
10
Dynamic effective connectivity in resting state fMRI.静息态 fMRI 中的动态有效连接
Neuroimage. 2018 Oct 15;180(Pt B):594-608. doi: 10.1016/j.neuroimage.2017.11.033. Epub 2017 Nov 20.

引用本文的文献

1
Association of the retrospective self-report ratings with the dynamics of EEG.回顾性自我报告评分与脑电图动态的关联。
Heliyon. 2019 Oct 1;5(10):e02533. doi: 10.1016/j.heliyon.2019.e02533. eCollection 2019 Oct.

本文引用的文献

1
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.人类执行认知过程中额叶脑网络的动态重构
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
4
Time-resolved resting-state brain networks.时分辨静息态脑网络。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6. doi: 10.1073/pnas.1400181111. Epub 2014 Jun 30.
6
Dynamic functional connectivity: promise, issues, and interpretations.动态功能连接:前景、问题与诠释。
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
8
Tracking whole-brain connectivity dynamics in the resting state.在静息状态下追踪全脑连接动力学。
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验