Hinchliffe Philip, González Mariano M, Mojica Maria F, González Javier M, Castillo Valerie, Saiz Cecilia, Kosmopoulou Magda, Tooke Catherine L, Llarrull Leticia I, Mahler Graciela, Bonomo Robert A, Vila Alejandro J, Spencer James
School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom;
Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, 2000 Rosario, Argentina;
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3745-54. doi: 10.1073/pnas.1601368113. Epub 2016 Jun 14.
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.
金属β-内酰胺酶(MBLs)能水解几乎所有的β-内酰胺抗生素,且不受临床可用的β-内酰胺酶抑制剂(βLIs)影响。活性位点结构将MBLs分为三类(B1、B2和B3),这使得开发对所有酶都有效的βLIs变得复杂。双噻唑烷(BTZs)是含羧酸盐的双环化合物,被认为是带有额外游离硫醇的青霉素类似物。在此,我们表明左旋和右旋BTZ对映体在体外都是所有MBL类别的微摩尔级竞争性βLIs,对于B1亚类MBLs(分别为IMP-1和BcII),其抑制常数(Ki)为6 - 15 μM或36 - 84 μM,对于B3酶L1,Ki为10 - 12 μM。对于B2 MBL Sfh-I,左旋BTZ对映体的Ki(0.26 - 0.36 μM)比右旋BTZs(26 - 29 μM)低100倍。重要的是,基于细胞的时间杀菌试验表明,BTZs可恢复产MBLs的大肠杆菌(IMP-1、Sfh-1、BcII和GOB-18)以及显著地,恢复表达L1的广泛耐药嗜麦芽窄食单胞菌临床分离株对β-内酰胺的敏感性。因此,BTZs可抑制所有类型的MBLs,并增强β-内酰胺对产生酶的病原体的活性。X射线晶体结构揭示了不同的BTZ结合模式,其随羧酸盐和硫醇部分的取向而变化。BTZs通过游离硫醇与B1(IMP-1;BcII)和B3(L1)MBLs的双锌中心结合,但根据立体化学不同而取向不同。相比之下,左旋BTZ羧酸盐主导了与单锌B2 MBL Sfh-I的相互作用,硫醇未参与其中。右旋BTZ复合物与β-内酰胺与B1 MBLs的结合最为相似,但具有前所未有的D120-锌相互作用破坏。因此,跨类别MBL抑制源于BTZ结合的意外多功能性。