González Mariano M, Kosmopoulou Magda, Mojica Maria F, Castillo Valerie, Hinchliffe Philip, Pettinati Ilaria, Brem Jürgen, Schofield Christopher J, Mahler Graciela, Bonomo Robert A, Llarrull Leticia I, Spencer James, Vila Alejandro J
Instituto de Biologı́a Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario (UNR) , Ocampo y Esmeralda, 2000 Rosario, Argentina.
School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol , University Walk, Bristol BS8 1TD, United Kingdom.
ACS Infect Dis. 2015 Nov 13;1(11):544-54. doi: 10.1021/acsinfecdis.5b00046. Epub 2015 Jul 20.
Pathogenic Gram-negative bacteria resistant to almost all β-lactam antibiotics are a major public health threat. Zn(II)-dependent or metallo-β-lactamases (MBLs) produced by these bacteria inactivate most β-lactam antibiotics, including the carbapenems, which are "last line therapies" for life-threatening Gram-negative infections. NDM-1 is a carbapenemase belonging to the MBL family that is rapidly spreading worldwide. Regrettably, inhibitors of MBLs are not yet developed. Here we present the bisthiazolidine (BTZ) scaffold as a structure with some features of β-lactam substrates, which can be modified with metal-binding groups to target the MBL active site. Inspired by known interactions of MBLs with β-lactams, we designed four BTZs that behave as in vitro NDM-1 inhibitors with Ki values in the low micromolar range (from 7 ± 1 to 19 ± 3 μM). NMR spectroscopy demonstrated that they inhibit hydrolysis of imipenem in NDM-1-producing Escherichia coli. In vitro time kill cell-based assays against a variety of bacterial strains harboring blaNDM-1 including Acinetobacter baumannii show that the compounds restore the antibacterial activity of imipenem. A crystal structure of the most potent heterocycle (L-CS319) in complex with NDM-1 at 1.9 Å resolution identified both structural determinants for inhibitor binding and opportunities for further improvements in potency.
对几乎所有β-内酰胺类抗生素耐药的致病性革兰氏阴性菌是一项重大的公共卫生威胁。这些细菌产生的锌(II)依赖性或金属β-内酰胺酶(MBL)可使大多数β-内酰胺类抗生素失活,包括碳青霉烯类,而碳青霉烯类是治疗危及生命的革兰氏阴性菌感染的“最后一线疗法”。NDM-1是一种属于MBL家族的碳青霉烯酶,正在全球迅速传播。遗憾的是,MBL的抑制剂尚未研发出来。在此,我们展示了双噻唑烷(BTZ)支架,其具有一些β-内酰胺底物的特征结构,可通过金属结合基团进行修饰以靶向MBL活性位点。受MBL与β-内酰胺已知相互作用的启发,我们设计了四种BTZ,它们在体外表现为NDM-1抑制剂,抑制常数(Ki)值处于低微摩尔范围(7±1至19±3μM)。核磁共振光谱表明,它们可抑制产NDM-1的大肠杆菌中亚胺培南的水解。针对多种携带blaNDM-1的细菌菌株(包括鲍曼不动杆菌)进行的体外基于时间杀灭细胞的试验表明,这些化合物可恢复亚胺培南的抗菌活性。最有效的杂环化合物(L-CS319)与NDM-1的复合物晶体结构在1.9Å分辨率下确定了抑制剂结合的结构决定因素以及进一步提高效力的机会。