Suppr超能文献

一种用于优化基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)光谱处理参数的设计实验方法可增强空肠弯曲菌抗生素耐药性的检测。

A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni.

作者信息

Penny Christian, Grothendick Beau, Zhang Lin, Borror Connie M, Barbano Duane, Cornelius Angela J, Gilpin Brent J, Fagerquist Clifton K, Zaragoza William J, Jay-Russell Michele T, Lastovica Albert J, Ragimbeau Catherine, Cauchie Henry-Michel, Sandrin Todd R

机构信息

Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology Esch-sur-Alzette, Luxembourg.

School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA.

出版信息

Front Microbiol. 2016 May 31;7:818. doi: 10.3389/fmicb.2016.00818. eCollection 2016.

Abstract

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.

摘要

基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)已被用作在属和种水平上进行微生物指纹识别的可靠且快速的工具。最近,人们对在属和种水平之外使用MALDI-TOF MS快速鉴定细菌的抗生素耐药菌株产生了浓厚兴趣。本研究的目的是通过一系列设计实验优化光谱处理参数,以提高空肠弯曲菌的菌株水平分辨率。从卢森堡、新西兰、北美和南非收集了172株空肠弯曲菌菌株,包括四组抗生素耐药分离株。这些组包括:(1)65株对头孢哌酮耐药;(2)26株对头孢哌酮和β-内酰胺类耐药;(3)5株对头孢哌酮、β-内酰胺类和四环素耐药;(4)76株对头孢哌酮、替考拉宁、两性霉素B和头孢噻吩耐药。最初,对一组由16株空肠弯曲菌组成的模型菌株(每个分离株有三个生物学重复和三个技术重复,共产生144个光谱)进行每个设计实验,以提高对抗生素耐药性的检测。将最优化的参数应用于由172个分离株组成的更大集合(每个分离株有两个生物学重复和三个技术重复,共产生1031个光谱)。我们观察到,每当应用基于曲线的相似系数(皮尔逊或排序皮尔逊)而非基于峰的(迪西)相似系数和/或应用优化的预处理参数时,抗生素耐药性检测都会增加。聚类分析后,使用留一法最大相似性技术对抗菌药物耐药性检测的增加进行评分。在前四组抗生素耐药分离株中,优化的预处理参数相对于上述组分别提高了检测率:(1)5%;(2)9%;(3)10%;(4)2%。从由31株对β-内酰胺类耐药和141株对β-内酰胺类敏感的菌株组成的集合中创建了另一个二级分类。应用最佳预处理参数后,β-内酰胺类耐药性检测提高了34%。这些结果表明,很少被优化或调整的光谱处理参数会影响基于MALDI-TOF MS的抗生素耐药性检测性能,并且可以进行微调以提高筛选性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验