Han Ji-Hyung, Wang Miao, Bai Peng, Brushett Fikile R, Bazant Martin Z
Department of Chemical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Rep. 2016 Jun 16;6:28054. doi: 10.1038/srep28054.
It is shown that surface conduction can stabilize electrodeposition in random, charged porous media at high rates, above the diffusion-limited current. After linear sweep voltammetry and impedance spectroscopy, copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in two different porous separators (cellulose nitrate, polyethylene), whose surfaces are modified by layer-by-layer deposition of positive or negative charged polyelectrolytes. Above the limiting current, surface conduction inhibits growth in the positive separators and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative separators, also leading to improved cycle life. The discovery of stable uniform growth in the random media differs from the non-uniform growth observed in parallel nanopores and cannot be explained by classic quasi-steady "leaky membrane" models, which always predict instability and dendritic growth. Instead, the experimental results suggest that transient electro-diffusion in random porous media imparts the stability of a deionization shock to the growing metal interface behind it. Shock electrodeposition could be exploited to enhance the cycle life and recharging rate of metal batteries or to accelerate the fabrication of metal matrix composite coatings.
结果表明,在高于扩散极限电流的情况下,表面传导能够稳定随机带电多孔介质中的电沉积过程,实现高速率电沉积。通过线性扫描伏安法和阻抗谱分析后,利用扫描电子显微镜和能谱仪对两种不同的多孔隔膜(硝酸纤维素、聚乙烯)中的铜电沉积物进行可视化观察,这两种隔膜的表面通过正负电荷交替沉积的聚电解质进行了改性。在极限电流之上,表面传导抑制了正性隔膜中的生长并产生不规则枝晶,而在负性隔膜中,它增强了去离子化冲击后的生长并抑制了枝晶,同时也延长了循环寿命。在随机介质中发现稳定的均匀生长与在平行纳米孔中观察到的非均匀生长不同,经典的准稳态“漏膜”模型无法解释这一现象,该模型总是预测不稳定性和枝晶生长。相反,实验结果表明,随机多孔介质中的瞬态电扩散赋予了其后方生长的金属界面去离子化冲击的稳定性。冲击电沉积可用于提高金属电池的循环寿命和充电速率,或加速金属基复合涂层的制备。