International School for Advanced Studies (SISSA) , via Bonomea 265, 34136 Trieste, Italy.
Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.
J Am Chem Soc. 2016 Aug 24;138(33):10374-7. doi: 10.1021/jacs.6b01363. Epub 2016 Jun 23.
Group II introns are Mg(2+)-dependent ribozymes that are considered to be the evolutionary ancestors of the eukaryotic spliceosome, thus representing an ideal model system to understand the mechanism of conversion of premature messenger RNA (mRNA) into mature mRNA. Neither in splicing nor for self-cleaving ribozymes has the role of the two Mg(2+) ions been established, and even the way the nucleophile is activated is still controversial. Here we employed hybrid quantum-classical QM(Car-Parrinello)/MM molecular dynamics simulations in combination with thermodynamic integration to characterize the molecular mechanism of the first and rate-determining step of the splicing process (i.e., the cleavage of the 5'-exon) catalyzed by group II intron ribozymes. Remarkably, our results show a new RNA-specific dissociative mechanism in which the bulk water accepts the nucleophile's proton during its attack on the scissile phosphate. The process occurs in a single step with no Mg(2+) ion activating the nucleophile, at odds with nucleases enzymes. We suggest that the novel reaction path elucidated here might be an evolutionary ancestor of the more efficient two-metal-ion mechanism found in enzymes.
内含子 II 是依赖于 Mg(2+)的核酶,被认为是真核剪接体的进化祖先,因此代表了理解从不成熟的信使 RNA(mRNA)转化为成熟 mRNA 的机制的理想模型系统。在剪接或自我切割核酶中,两个 Mg(2+)离子的作用都没有得到确定,甚至激活亲核试剂的方式仍存在争议。在这里,我们采用了混合量子经典 QM(Car-Parrinello)/MM 分子动力学模拟结合热力学积分来描述由 II 类内含子核酶催化的剪接过程(即 5'-外显子的切割)的第一步和限速步骤的分子机制。值得注意的是,我们的结果显示了一种新的 RNA 特异性的离解机制,其中亲核试剂在攻击可切割的磷酸酯时,将质子传递给了大量的水分子。该过程在没有 Mg(2+)离子激活亲核试剂的情况下,以单一步骤进行,这与核酸酶酶不同。我们认为,这里阐明的新反应途径可能是在酶中发现的更有效的双金属离子机制的进化祖先。
Methods Mol Biol. 2012
Met Ions Life Sci. 2011
Trends Biochem Sci. 2009-4
Nucleic Acids Res. 2018-9-19
Science. 2008-4-4
QRB Discov. 2022
J Chem Theory Comput. 2023-4-11
Electron Struct. 2023-3
Front Mol Biosci. 2022-10-28
Chem Catal. 2022-5-19
Org Biomol Chem. 2022-8-10