Nierzwicki Łukasz, Ahsan Mohd, Palermo Giulia
Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.
Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.
Electron Struct. 2023 Mar;5(1). doi: 10.1088/2516-1075/acb410. Epub 2023 Feb 1.
Genome editing based on the CRISPR-Cas9 system has paved new avenues for medicine, pharmaceutics, biotechnology, and beyond. This article reports the role of first-principles (ab-initio) molecular dynamics (MD) in the CRISPR-Cas9 revolution, achieving a profound understanding of the enzymatic function and offering valuable insights for enzyme engineering. We introduce the methodologies and explain the use of ab-initio MD simulations to characterize the two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A detailed description of how ab-initio MD is combined with free-energy methods - i.e., thermodynamic integration and metadynamics - to break and form chemical bonds is given, explaining the use of these methods to determine the chemical landscape and establish the catalytic mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining theory and application of constant pH MD simulations, used to accurately predict the catalytic residues' protonation states. Overall, first-principles methods are shown to unravel the electronic structure of the Cas9 enzyme, providing valuable insights that can serve for the design of genome editing tools with improved catalytic efficiency or controllable activity.
基于CRISPR-Cas9系统的基因组编辑为医学、制药、生物技术及其他领域开辟了新途径。本文报道了第一性原理(从头算)分子动力学(MD)在CRISPR-Cas9革命中的作用,实现了对酶功能的深入理解,并为酶工程提供了有价值的见解。我们介绍了相关方法,并解释了如何使用从头算MD模拟来表征Cas9酶RuvC结构域中依赖双金属的DNA切割机制,以及第二个催化结构域HNH如何借助单个金属离子切割靶DNA。本文详细描述了从头算MD如何与自由能方法(即热力学积分和元动力学)相结合来断裂和形成化学键,解释了如何使用这些方法来确定化学态势并建立CRISPR-Cas9中的催化机制。还讨论了经典方法的关键作用,解释了用于准确预测催化残基质子化状态的恒定pH MD模拟的理论和应用。总的来说,第一性原理方法能够揭示Cas9酶的电子结构,提供有价值的见解,可用于设计具有更高催化效率或可控活性的基因组编辑工具。