Suppr超能文献

靶DNA切割原理及Mg2+在CRISPR-Cas9催化中的作用

Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9.

作者信息

Nierzwicki Łukasz, East Kyle W, Binz Jonas M, Hsu Rohaine V, Ahsan Mohd, Arantes Pablo R, Skeens Erin, Pacesa Martin, Jinek Martin, Lisi George P, Palermo Giulia

机构信息

Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.

Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, United States.

出版信息

Nat Catal. 2022 Oct;5(10):912-922. doi: 10.1038/s41929-022-00848-6. Epub 2022 Oct 6.

Abstract

At the core of the CRISPR-Cas9 genome-editing technology, the endonuclease Cas9 introduces site-specific breaks in DNA. However, precise mechanistic information to ameliorating Cas9 function is still missing. Here, multi-microsecond molecular dynamics, free-energy and multiscale simulations are combined with solution NMR and DNA cleavage experiments to resolve the catalytic mechanism of target DNA cleavage. We show that the conformation of an active HNH nuclease is tightly dependent on the catalytic Mg, unveiling its cardinal structural role. This activated Mg-bound HNH is consistently described through molecular simulations, solution NMR and DNA cleavage assays, revealing also that the protonation state of the catalytic H840 is strongly affected by active site mutations. Finally, QM(DFT)/MM simulations and metadynamics establish the catalytic mechanism, showing that the catalysis is activated by H840 and completed by K866, rationalising DNA cleavage experiments. This information is critical to enhance the enzymatic function of CRISPR-Cas9 toward improved genome-editing.

摘要

在CRISPR-Cas9基因组编辑技术的核心,核酸内切酶Cas9会在DNA中引入位点特异性断裂。然而,改善Cas9功能的精确机制信息仍然缺失。在这里,将多微秒分子动力学、自由能和多尺度模拟与溶液核磁共振和DNA切割实验相结合,以解析靶DNA切割的催化机制。我们表明,活性HNH核酸酶的构象紧密依赖于催化性镁离子,揭示了其关键的结构作用。通过分子模拟、溶液核磁共振和DNA切割分析一致地描述了这种被激活的与镁离子结合的HNH,还揭示了催化性H840的质子化状态受到活性位点突变的强烈影响。最后,量子力学(密度泛函理论)/分子力学模拟和元动力学确定了催化机制,表明催化作用由H840激活并由K866完成,这为DNA切割实验提供了合理的解释。这些信息对于增强CRISPR-Cas9的酶功能以改进基因组编辑至关重要。

相似文献

1
Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9.
Nat Catal. 2022 Oct;5(10):912-922. doi: 10.1038/s41929-022-00848-6. Epub 2022 Oct 6.
3
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
4
The Electronic Structure of Genome Editors from the First Principles.
Electron Struct. 2023 Mar;5(1). doi: 10.1088/2516-1075/acb410. Epub 2023 Feb 1.
5
Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics.
J Am Chem Soc. 2020 Jan 22;142(3):1348-1358. doi: 10.1021/jacs.9b10521. Epub 2020 Jan 9.
7
Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
J Chem Inf Model. 2023 Nov 13;63(21):6834-6850. doi: 10.1021/acs.jcim.3c01284. Epub 2023 Oct 25.
8
Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
Nat Commun. 2017 Nov 9;8(1):1375. doi: 10.1038/s41467-017-01496-2.
9
Active-Site Models of Cas9 in DNA Cleavage State.
Front Mol Biosci. 2021 Apr 21;8:653262. doi: 10.3389/fmolb.2021.653262. eCollection 2021.
10
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.

引用本文的文献

1
Structural insights into Type II-D Cas9 and its robust cleavage activity.
Nat Commun. 2025 Aug 11;16(1):7396. doi: 10.1038/s41467-025-62128-8.
2
Graph Attention Neural Networks Reveal TnsC Filament Assembly in a CRISPR-Associated Transposon.
bioRxiv. 2025 Jun 17:2025.06.17.659969. doi: 10.1101/2025.06.17.659969.
4
CRISPR-Cas12a REC2 - NUC interactions drive target-strand cleavage and constrain trans cleavage.
bioRxiv. 2025 Mar 25:2025.03.23.644851. doi: 10.1101/2025.03.23.644851.
6
7
Graph theory approaches for molecular dynamics simulations.
Q Rev Biophys. 2024 Dec 10;57:e15. doi: 10.1017/S0033583524000143.
8
Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing.
Anal Bioanal Chem. 2025 Apr;417(9):1699-1711. doi: 10.1007/s00216-024-05678-y. Epub 2024 Nov 27.
9
Probing Electrostatic Interactions in DNA-Bound CRISPR/Cas9 Complexes by Molecular Dynamics Simulations.
ACS Omega. 2024 Oct 30;9(45):44974-44988. doi: 10.1021/acsomega.4c04359. eCollection 2024 Nov 12.

本文引用的文献

1
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
2
Structural basis for mismatch surveillance by CRISPR-Cas9.
Nature. 2022 Mar;603(7900):343-347. doi: 10.1038/s41586-022-04470-1. Epub 2022 Mar 2.
3
Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9.
Elife. 2021 Dec 15;10:e73601. doi: 10.7554/eLife.73601.
4
Exploring the Catalytic Mechanism of Cas9 Using Information Inferred from Endonuclease VII.
ACS Catal. 2019 Feb 1;9(2):1329-1336. doi: 10.1021/acscatal.8b04324. Epub 2018 Dec 28.
5
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
6
Real-time observation of Cas9 postcatalytic domain motions.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2010650118. Epub 2020 Dec 21.
7
Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics.
J Am Chem Soc. 2020 Jan 22;142(3):1348-1358. doi: 10.1021/jacs.9b10521. Epub 2020 Jan 9.
8
Exploring alternative catalytic mechanisms of the Cas9 HNH domain.
Proteins. 2020 Feb;88(2):260-264. doi: 10.1002/prot.25796. Epub 2019 Sep 6.
10
Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.
Nat Struct Mol Biol. 2019 Aug;26(8):679-685. doi: 10.1038/s41594-019-0258-2. Epub 2019 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验