Suppr超能文献

阐明多种醛/醇脱氢酶对丙酮丁醇梭菌生产丁醇和乙醇的贡献。

Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

机构信息

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Sci Rep. 2016 Jun 20;6:28189. doi: 10.1038/srep28189.

Abstract

Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.

摘要

在丙酮丁醇梭菌中,乙醇和丁醇的生物合成共享共同的醛/醇脱氢酶。然而,对于这些多种脱氢酶分别对乙醇和丁醇生产的相对贡献知之甚少。通过分别失活 C. acetobutylicum 的六个醛/醇脱氢酶基因来评估它们对丁醇和乙醇生产的贡献。对于丁醇生产,这些酶的相对贡献为:AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2。对于乙醇生产,贡献分别为:AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA。AdhE1 和 BdhB 是丁醇和乙醇生产的两个必需酶。AdhE1 相对特异于丁醇生产而非乙醇,而 BdhB、YqhD 和 SMB_P058 则有利于乙醇生产而非丁醇。在 adhE2 突变体中,丁醇/乙醇比例(8.15:1)高于野生型菌株(6.65:1),丁醇合成增加。SMB_P058 突变体和 yqhD 突变体都减少了乙醇的产生,而不损失丁醇的形成,导致丁醇/乙醇比例分别提高到 10.12:1 和 10.17:1。为了构建更高效的丁醇生产菌株,可以过表达 adhE1,此外,adhE2、SMB_P058、yqhD 是有前途的基因失活靶标。这项工作为丁醇生产的未来菌株改良提供了有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec3/4913296/7264d0bbd8c0/srep28189-f1.jpg

相似文献

2
n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
Bioresour Technol. 2019 Aug;285:121316. doi: 10.1016/j.biortech.2019.121316. Epub 2019 Apr 3.
3
Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.
Metab Eng. 2012 Nov;14(6):630-41. doi: 10.1016/j.ymben.2012.09.001. Epub 2012 Sep 14.
4
Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
mBio. 2019 Jan 22;10(1):e02683-18. doi: 10.1128/mBio.02683-18.
6
Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production.
Biotechnol J. 2009 Oct;4(10):1432-40. doi: 10.1002/biot.200900142.
9
Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.
N Biotechnol. 2012 May 15;29(4):485-93. doi: 10.1016/j.nbt.2012.01.001. Epub 2012 Jan 21.
10
Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol.
Bioresour Technol. 2016 Oct;218:909-17. doi: 10.1016/j.biortech.2016.07.060. Epub 2016 Jul 15.

引用本文的文献

2
Metabolic engineering of Escherichia coli for efficient biosynthesis of butyl acetate.
Microb Cell Fact. 2022 Feb 22;21(1):28. doi: 10.1186/s12934-022-01755-y.
6
Group II Intron RNPs and Reverse Transcriptases: From Retroelements to Research Tools.
Cold Spring Harb Perspect Biol. 2019 Apr 1;11(4):a032375. doi: 10.1101/cshperspect.a032375.
7
Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
mBio. 2019 Jan 22;10(1):e02683-18. doi: 10.1128/mBio.02683-18.
8
Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
J Ind Microbiol Biotechnol. 2018 May;45(5):313-327. doi: 10.1007/s10295-018-2031-7. Epub 2018 Mar 27.
9
Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.
Microb Cell Fact. 2017 Jun 24;16(1):115. doi: 10.1186/s12934-017-0728-3.

本文引用的文献

1
3
Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.
Metab Eng. 2012 Nov;14(6):630-41. doi: 10.1016/j.ymben.2012.09.001. Epub 2012 Sep 14.
5
Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.
N Biotechnol. 2012 May 15;29(4):485-93. doi: 10.1016/j.nbt.2012.01.001. Epub 2012 Jan 21.
6
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals.
Nature. 2011 Aug 10;476(7360):355-9. doi: 10.1038/nature10333.
8
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
Nat Chem Biol. 2011 May 22;7(7):445-52. doi: 10.1038/nchembio.580.
9
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.
Appl Environ Microbiol. 2011 May;77(9):2905-15. doi: 10.1128/AEM.03034-10. Epub 2011 Mar 11.
10
Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.
Appl Environ Microbiol. 2011 Mar;77(5):1674-80. doi: 10.1128/AEM.01835-10. Epub 2011 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验