Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de la Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros km. 7.5, Torreón CP. 27276, Mexico.
Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil.
Int J Mol Sci. 2021 Nov 12;22(22):12249. doi: 10.3390/ijms222212249.
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
从木质纤维素的分解中生产生物燃料和其他增值产品需要各种微生物的协调代谢活性。全球对生物燃料的需求不断增长,鼓励了生产策略的开发和优化。反过来,优化又需要彻底了解形成每种感兴趣产品背后的微生物机制和代谢途径。木质纤维素生物质的水解是其工业应用的瓶颈,通常会影响产率效率。生物质对微生物的可及性是释放糖的关键,这些糖随后被吸收为底物,并进一步转化为所需的产品。虽然已经研究了不同代谢中间产物在生物燃料和其他相关产品的整体生产中的作用,但在厌氧条件下蛋白质及其活性的作用尚未得到广泛探索。酶产量的变化可能反映出所涉及微生物的状态;因此,深入了解蛋白质的产生和酶的活性可能是优化生产策略的有效资源。蛋白质组学分析的应用在该领域是一种很有前途的策略。本综述涉及使用木质纤维素生物质作为底物生产生物燃料的生物过程中的酶和蛋白质组学方面。