Suppr超能文献

基于信息最大化的对比度失真图像无参考质量度量。

No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization.

出版信息

IEEE Trans Cybern. 2017 Dec;47(12):4559-4565. doi: 10.1109/TCYB.2016.2575544. Epub 2016 Jun 15.

Abstract

The general purpose of seeing a picture is to attain information as much as possible. With it, we in this paper devise a new no-reference/blind metric for image quality assessment (IQA) of contrast distortion. For local details, we first roughly remove predicted regions in an image since unpredicted remains are of much information. We then compute entropy of particular unpredicted areas of maximum information via visual saliency. From global perspective, we compare the image histogram with the uniformly distributed histogram of maximum information via the symmetric Kullback-Leibler divergence. The proposed blind IQA method generates an overall quality estimation of a contrast-distorted image by properly combining local and global considerations. Thorough experiments on five databases/subsets demonstrate the superiority of our training-free blind technique over state-of-the-art full- and no-reference IQA methods. Furthermore, the proposed model is also applied to amend the performance of general-purpose blind quality metrics to a sizable margin.

摘要

看图片的一般目的是尽可能多地获取信息。有鉴于此,我们在本文中设计了一种新的无参考/盲图像质量评估 (IQA) 度量方法,用于评估对比度失真。对于局部细节,我们首先大致去除图像中预测的区域,因为未预测的区域包含更多的信息。然后,我们通过视觉显著性计算具有最大信息量的特定未预测区域的熵。从全局角度来看,我们通过对称 Kullback-Leibler 散度比较图像直方图与最大信息量的均匀分布直方图。所提出的盲 IQA 方法通过适当结合局部和全局考虑因素,对对比度失真图像进行整体质量估计。在五个数据库/子集上的彻底实验表明,我们的无训练盲技术优于最先进的全参考和无参考 IQA 方法。此外,所提出的模型还应用于在相当大的程度上改善通用盲质量度量的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验