Suppr超能文献

小动脉氧反应性:传感器位于何处以及作用机制是什么?

Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action?

作者信息

Jackson William F

机构信息

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.

出版信息

J Physiol. 2016 Sep 15;594(18):5055-77. doi: 10.1113/JP270192. Epub 2016 Jul 21.

Abstract

Arterioles in the peripheral microcirculation are exquisitely sensitive to changes in PO2 in their environment: increases in PO2 cause vasoconstriction while decreases in PO2 result in vasodilatation. However, the cell type that senses O2 (the O2 sensor) and the signalling pathway that couples changes in PO2 to changes in arteriolar tone (the mechanism of action) remain unclear. Many (but not all) ex vivo studies of isolated cannulated resistance arteries and large, first-order arterioles support the hypothesis that these vessels are intrinsically sensitive to PO2 with the smooth muscle, endothelial cells, or red blood cells serving as the O2 sensor. However, in situ studies testing these hypotheses in downstream arterioles have failed to find evidence of intrinsic O2 sensitivity, and instead have supported the idea that extravascular cells sense O2 . Similarly, ex vivo studies of isolated, cannulated resistance arteries and large first-order arterioles support the hypotheses that O2 -dependent inhibition of production of vasodilator cyclooxygenase products or O2 -dependent destruction of nitric oxide mediates O2 reactivity of these upstream vessels. In contrast, most in vivo studies of downstream arterioles have disproved these hypotheses and instead have provided evidence supporting the idea that O2 -dependent production of vasoconstrictors mediates arteriolar O2 reactivity, with significant regional heterogeneity in the specific vasoconstrictor involved. Oxygen-induced vasoconstriction may serve as a protective mechanism to reduce the oxidative burden to which a tissue is exposed, a process that is superimposed on top of the local mechanisms which regulate tissue blood flow to meet a tissue's metabolic demand.

摘要

外周微循环中的小动脉对其周围环境中PO2的变化极为敏感:PO2升高会导致血管收缩,而PO2降低则会引起血管舒张。然而,感知氧气的细胞类型(氧气传感器)以及将PO2变化与小动脉张力变化联系起来的信号通路(作用机制)仍不清楚。许多(但不是全部)对分离的插管阻力动脉和大型一级小动脉的离体研究支持这样一种假说,即这些血管对PO2具有内在敏感性,平滑肌、内皮细胞或红细胞可作为氧气传感器。然而,在下游小动脉中检验这些假说的原位研究未能找到内在氧气敏感性的证据,反而支持了血管外细胞感知氧气的观点。同样,对分离的插管阻力动脉和大型一级小动脉的离体研究支持这样的假说,即氧气依赖性抑制血管舒张性环氧化酶产物的生成或氧气依赖性一氧化氮的破坏介导了这些上游血管的氧气反应性。相比之下,大多数对下游小动脉的体内研究否定了这些假说,反而提供了证据支持这样的观点,即氧气依赖性血管收缩剂的生成介导了小动脉的氧气反应性,所涉及的特定血管收缩剂存在显著的区域异质性。氧气诱导的血管收缩可能作为一种保护机制,以减轻组织所暴露的氧化负担,这一过程叠加在调节组织血流以满足组织代谢需求的局部机制之上。

相似文献

7
Arteriolar oxygen reactivity: where is the sensor?小动脉氧反应性:传感器在哪里?
Am J Physiol. 1987 Nov;253(5 Pt 2):H1120-6. doi: 10.1152/ajpheart.1987.253.5.H1120.
8
Prostaglandins do not mediate arteriolar oxygen reactivity.前列腺素不介导小动脉氧反应性。
Am J Physiol. 1986 Jun;250(6 Pt 2):H1102-8. doi: 10.1152/ajpheart.1986.250.6.H1102.

引用本文的文献

1
Hyperoxia and acute brain injury.高氧与急性脑损伤。
Crit Care. 2025 Aug 21;29(1):377. doi: 10.1186/s13054-025-05618-x.
7
Electro-metabolic signaling.电代谢信号。
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202313451. Epub 2024 Jan 10.
8
Acute oxygen sensing by vascular smooth muscle cells.血管平滑肌细胞的急性氧感知
Front Physiol. 2023 Mar 3;14:1142354. doi: 10.3389/fphys.2023.1142354. eCollection 2023.
9
Vascular mechanotransduction.血管力学转导。
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.

本文引用的文献

5
Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle.衰老改变了小鼠臀大肌微血管阻力网络的反应性。
Am J Physiol Heart Circ Physiol. 2014 Sep 15;307(6):H830-9. doi: 10.1152/ajpheart.00368.2014. Epub 2014 Jul 11.
7
Bang-bang model for regulation of local blood flow.砰砰模型调节局部血流。
Microcirculation. 2013 Aug;20(6):455-83. doi: 10.1111/micc.12051.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验