Davtyan Aram, Simunovic Mijo, Voth Gregory A
Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, IL 60637, USA.
Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, IL 60637, USA; The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
J Struct Biol. 2016 Oct;196(1):57-63. doi: 10.1016/j.jsb.2016.06.012. Epub 2016 Jun 17.
Protein-facilitated shape and topology changes of cell membranes are crucial for many biological processes, such as cell division, protein trafficking, and cell signaling. However, the inherently multiscale nature of membrane remodeling presents a considerable challenge for understanding the mechanisms and physics that drive this process. To address this problem, a multiscale approach that makes use of a diverse set of computational and experimental techniques is required. The atomistic simulations provide high-resolution information on protein-membrane interactions. Experimental techniques, like electron microscopy, on the other hand, resolve high-order organization of proteins on the membrane. Coarse-grained (CG) and mesoscale computational techniques provide the intermediate link between the two scales and can give new insights into the underlying mechanisms. In this Review, we present the recent advances in multiscale computational approaches established in our group. We discuss various CG and mesoscale approaches in studying the protein-mediated large-scale membrane remodeling.
蛋白质介导的细胞膜形状和拓扑结构变化对于许多生物过程至关重要,如细胞分裂、蛋白质运输和细胞信号传导。然而,膜重塑固有的多尺度性质给理解驱动这一过程的机制和物理原理带来了相当大的挑战。为了解决这个问题,需要一种利用多种计算和实验技术的多尺度方法。原子模拟提供了关于蛋白质-膜相互作用的高分辨率信息。另一方面,像电子显微镜这样的实验技术可以解析膜上蛋白质的高阶组织。粗粒度(CG)和中尺度计算技术提供了两个尺度之间的中间环节,并能为潜在机制提供新的见解。在本综述中,我们展示了我们团队建立的多尺度计算方法的最新进展。我们讨论了在研究蛋白质介导的大规模膜重塑中各种CG和中尺度方法。