Bahrami Amir Houshang, Lin Mary G, Ren Xuefeng, Hurley James H, Hummer Gerhard
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America.
PLoS Comput Biol. 2017 Oct 24;13(10):e1005817. doi: 10.1371/journal.pcbi.1005817. eCollection 2017 Oct.
Autophagy is a physiological process for the recycling and degradation of cellular materials. Forming the autophagosome from the phagophore, a cup-shaped double-membrane vesicle, is a critical step in autophagy. The origin of the cup shape of the phagophore is poorly understood. In yeast, fusion of a small number of Atg9-containing vesicles is considered a key step in autophagosome biogenesis, aided by Atg1 complexes (ULK1 in mammals) localized at the preautophagosomal structure (PAS). In particular, the S-shaped Atg17-Atg31-Atg29 subcomplex of Atg1 is critical for phagophore nucleation at the PAS. To study this process, we simulated membrane remodeling processes in the presence and absence of membrane associated Atg17. We show that at least three vesicles need to fuse to induce the phagophore shape, consistent with experimental observations. However, fusion alone is not sufficient. Interactions with 34-nm long, S-shaped Atg17 complexes are required to overcome a substantial kinetic barrier in the transition to the cup-shaped phagophore. Our finding rationalizes the recruitment of Atg17 complexes to the yeast PAS, and their unusual shape. In control simulations without Atg17, with weakly binding Atg17, or with straight instead of S-shaped Atg17, the membrane shape transition did not occur. We confirm the critical role of Atg17-membrane interactions experimentally by showing that mutations of putative membrane interaction sites result in reduction or loss of autophagic activity in yeast. Fusion of a small number of vesicles followed by Atg17-guided membrane shape-remodeling thus emerges as a viable route to phagophore formation.
自噬是一种用于细胞物质循环和降解的生理过程。由吞噬泡(一种杯状双膜囊泡)形成自噬体是自噬过程中的关键步骤。吞噬泡杯状结构的起源尚不清楚。在酵母中,少量含Atg9囊泡的融合被认为是自噬体生物发生的关键步骤,这一过程由定位在自噬前体结构(PAS)的Atg1复合物(哺乳动物中的ULK1)辅助。特别是,Atg1的S形Atg17-Atg31-Atg29亚复合物对于PAS处吞噬泡的成核至关重要。为了研究这一过程,我们模拟了存在和不存在膜相关Atg17时的膜重塑过程。我们发现至少需要三个囊泡融合才能诱导吞噬泡的形成,这与实验观察结果一致。然而,仅融合是不够的。需要与34纳米长的S形Atg17复合物相互作用,以克服向杯状吞噬泡转变过程中的巨大动力学障碍。我们的发现解释了Atg17复合物被招募到酵母PAS及其异常形状的原因。在没有Atg17、Atg17结合较弱或Atg17为直形而非S形的对照模拟中,膜形状转变并未发生。我们通过实验证实了Atg17与膜相互作用的关键作用,表明推定的膜相互作用位点的突变会导致酵母自噬活性降低或丧失。因此,少量囊泡融合后由Atg17引导的膜形状重塑成为吞噬泡形成的可行途径。