Suppr超能文献

人类行走中后摆腿的运动与制动:通过踝关节调节和膝关节协方差进行腿部力控制。

The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance.

作者信息

Toney Megan E, Chang Young-Hui

机构信息

School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.

Comparative Neuromechanics Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St NW, Atlanta, GA, 30332-0356, USA.

出版信息

Exp Brain Res. 2016 Oct;234(10):3011-23. doi: 10.1007/s00221-016-4703-8. Epub 2016 Jun 22.

Abstract

Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady-state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step to step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production.

摘要

人类行走是一项复杂的任务,我们尚未完全理解神经肌肉系统如何组织其众多的肌肉和关节,以实现一致且高效的行走力学。对选定的有影响力的任务级变量进行集中控制,可能会简化稳态行走的高级控制,并降低对神经肌肉系统的需求。由于后摆腿的发力和施力会影响步间转换的机械效率,我们研究了在人类行走过程中关节扭矩是如何组织起来以控制腿部力量和腿部功率的。我们测试了后摆腿力量控制的时机是否与腿部功率产生峰值的时机相对应。我们还应用了一种改进的非控制流形分析,以测试个体或协同的关节扭矩策略对腿部力量控制的贡献最大。我们发现,步与步之间会调整腿部力量大小,以保持一致的腿部功率产生。腿部力量调制主要由峰值踝跖屈扭矩的时间调整决定,而膝关节扭矩会同时协同变化,以减弱踝扭矩对腿部力量的影响。我们提出了一种协同关节扭矩控制策略,其中后摆腿踝关节充当驱动腿部功率产生的发动机,而后摆腿膝关节扭矩充当制动器,以优化腿部功率产生。

相似文献

1
The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance.
Exp Brain Res. 2016 Oct;234(10):3011-23. doi: 10.1007/s00221-016-4703-8. Epub 2016 Jun 22.
2
The motor and the brake of the trailing leg in human walking: transtibial amputation limits ankle-knee torque covariation.
Exp Brain Res. 2023 Jan;241(1):161-174. doi: 10.1007/s00221-022-06513-5. Epub 2022 Nov 21.
3
Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces.
Exp Brain Res. 2013 Dec;231(4):433-43. doi: 10.1007/s00221-013-3708-9. Epub 2013 Oct 1.
5
6
A model of muscle-tendon function in human walking at self-selected speed.
IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):352-62. doi: 10.1109/TNSRE.2013.2291903.
7
Leg joint function during walking acceleration and deceleration.
J Biomech. 2016 Jan 4;49(1):66-72. doi: 10.1016/j.jbiomech.2015.11.022. Epub 2015 Nov 22.
8
A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
J Biomech. 1996 Jan;29(1):81-90. doi: 10.1016/0021-9290(95)00011-9.
9
Human leg model predicts ankle muscle-tendon morphology, state, roles and energetics in walking.
PLoS Comput Biol. 2011 Mar;7(3):e1001107. doi: 10.1371/journal.pcbi.1001107. Epub 2011 Mar 17.
10
The relationship between hip, knee and ankle muscle mechanical characteristics and gait transition speed.
Hum Mov Sci. 2014 Dec;38:47-57. doi: 10.1016/j.humov.2014.08.006. Epub 2014 Sep 23.

引用本文的文献

1
Employing a single trial motor equivalent analysis for the assessment of motor learning.
Exp Brain Res. 2025 Jun 20;243(7):179. doi: 10.1007/s00221-025-07123-7.
2
3
Fascicle dynamics of the tibialis anterior muscle reflect whole-body walking economy.
Sci Rep. 2023 Mar 22;13(1):4660. doi: 10.1038/s41598-023-31501-2.
4
Muscle activation strategies of people with early-stage Parkinson's during walking.
J Neuroeng Rehabil. 2021 Sep 8;18(1):133. doi: 10.1186/s12984-021-00932-1.
5
Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
J Neurophysiol. 2021 Jul 1;126(1):227-248. doi: 10.1152/jn.00120.2021. Epub 2021 Jun 9.
6
Effects of gait rehabilitation on motor coordination in stroke survivors: an UCM-based approach.
Exp Brain Res. 2021 Jul;239(7):2107-2118. doi: 10.1007/s00221-021-06117-5. Epub 2021 May 6.
7
Altered post-stroke propulsion is related to paretic swing phase kinematics.
Clin Biomech (Bristol). 2020 Feb;72:24-30. doi: 10.1016/j.clinbiomech.2019.11.024. Epub 2019 Nov 29.
8
Neuromechanical control of leg length and orientation in children and adults during single-leg hopping.
Exp Brain Res. 2019 Jul;237(7):1745-1757. doi: 10.1007/s00221-019-05548-5. Epub 2019 Apr 27.
9
Not all brawn, but some brain. Strength gains after training alters kinematic motor abundance in hopping.
PeerJ. 2018 Nov 23;6:e6010. doi: 10.7717/peerj.6010. eCollection 2018.
10
Biomechanical effects of augmented ankle power output during human walking.
J Exp Biol. 2018 Nov 16;221(Pt 22):jeb182113. doi: 10.1242/jeb.182113.

本文引用的文献

1
The role of series ankle elasticity in bipedal walking.
J Theor Biol. 2014 Apr 7;346:75-85. doi: 10.1016/j.jtbi.2013.12.014. Epub 2013 Dec 21.
2
Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces.
Exp Brain Res. 2013 Dec;231(4):433-43. doi: 10.1007/s00221-013-3708-9. Epub 2013 Oct 1.
3
Rules to limp by: joint compensation conserves limb function after peripheral nerve injury.
Biol Lett. 2013 Aug 14;9(5):20130484. doi: 10.1098/rsbl.2013.0484. Print 2013 Oct 23.
4
Differences in contractile behaviour between the soleus and medial gastrocnemius muscles during human walking.
J Exp Biol. 2013 Mar 1;216(Pt 5):909-14. doi: 10.1242/jeb.078196. Epub 2012 Nov 29.
5
Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):977-82. doi: 10.1073/pnas.1107972109. Epub 2012 Jan 4.
6
Short-term effects of muscular denervation and fasciotomy on global limb variables during locomotion in the decerebrate cat.
Cells Tissues Organs. 2011;193(5):325-35. doi: 10.1159/000323679. Epub 2011 Mar 21.
7
Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61. doi: 10.1242/jeb.038588.
8
Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking.
J Neurophysiol. 2010 May;103(5):2747-56. doi: 10.1152/jn.00547.2009. Epub 2010 Mar 17.
9
Rate-dependent control strategies stabilize limb forces during human locomotion.
J R Soc Interface. 2010 May 6;7(46):801-10. doi: 10.1098/rsif.2009.0296. Epub 2009 Oct 14.
10
Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
Biol Cybern. 2009 Jul;101(1):49-61. doi: 10.1007/s00422-009-0316-7. Epub 2009 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验