Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan.
Plant Physiol. 2023 Nov 22;193(4):2498-2512. doi: 10.1093/plphys/kiad466.
Plants cope with sudden increases in light intensity through various photoprotective mechanisms. Redox regulation by thioredoxin (Trx) systems also contributes to this process. Whereas the functions of f- and m-type Trxs in response to such fluctuating light conditions have been extensively investigated, those of x- and y-type Trxs are largely unknown. Here, we analyzed the trx x single, trx y1 trx y2 double, and trx x trx y1 trx y2 triple mutants in Arabidopsis (Arabidopsis thaliana). A detailed analysis of photosynthesis revealed changes in photosystem I (PSI) parameters under low light in trx x and trx x trx y1 trx y2. The electron acceptor side of PSI was more reduced in these mutants than in the wild type. This mutant phenotype was more pronounced under fluctuating light conditions. During both low- and high-light phases, the PSI acceptor side was largely limited in trx x and trx x trx y1 trx y2. After fluctuating light treatment, we observed more severe PSI photoinhibition in trx x and trx x trx y1 trx y2 than in the wild type. Furthermore, when grown under fluctuating light conditions, trx x and trx x trx y1 trx y2 plants showed impaired growth and decreased level of PSI subunits. These results suggest that Trx x and Trx y prevent redox imbalance on the PSI acceptor side, which is required to protect PSI from photoinhibition, especially under fluctuating light. We also propose that Trx x and Trx y contribute to maintaining the redox balance even under constant low-light conditions to prepare for sudden increases in light intensity.
植物通过各种光保护机制来应对光照强度的突然增加。硫氧还蛋白(Trx)系统的氧化还原调节也有助于这一过程。虽然 f-型和 m-型 Trx 应对这种波动光照条件的功能已被广泛研究,但 x-型和 y-型 Trx 的功能在很大程度上仍是未知的。在这里,我们分析了拟南芥(Arabidopsis thaliana)中的 trx x 单突变体、trx y1 trx y2 双突变体和 trx x trx y1 trx y2 三突变体。对光合作用的详细分析表明,trx x 和 trx x trx y1 trx y2 在低光下 PSI 参数发生了变化。PSI 电子受体侧在这些突变体中比在野生型中更容易被还原。这种突变体表型在波动光照条件下更为明显。在低光和高光阶段,PSI 受体侧在 trx x 和 trx x trx y1 trx y2 中受到很大限制。在波动光处理后,我们观察到 trx x 和 trx x trx y1 trx y2 比野生型更容易发生更严重的 PSI 光抑制。此外,在波动光照条件下生长时,trx x 和 trx x trx y1 trx y2 植物的生长受到损害,PSI 亚基水平降低。这些结果表明,Trx x 和 Trx y 防止 PSI 受体侧的氧化还原失衡,这对于保护 PSI 免受光抑制是必需的,尤其是在波动光照下。我们还提出,Trx x 和 Trx y 有助于在恒定低光照条件下维持氧化还原平衡,为光照强度的突然增加做好准备。