Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg 82152, Germany.
Department of Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg 82152, Germany.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2306338120. doi: 10.1073/pnas.2306338120. Epub 2023 Aug 7.
NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of as well as that of the vascular plant in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the mutant, CRISPR-based mutants also exhibited a redox-dependent cold phenotype. In addition, deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.
NADPH 依赖型硫氧还蛋白还原酶 C(NTRC)是藻类和植物中的叶绿体氧化还原调节剂。在这里,我们通过对绿藻 NTRC 的硫氧还域活性位点进行定点突变分析,表明 NTRC 以依赖氧化还原的方式介导耐寒性。通过共免疫沉淀和质谱分析,鉴定到 Calvin-Benson 循环蛋白 12(CP12)与 NTRC 发生氧化还原依赖性结合。随后证明 NTRC 可直接还原 以及血管植物 的 CP12。作为支架蛋白,CP12 将磷酸核酮糖激酶(PRK)和甘油醛-3-磷酸脱氢酶(GAPDH)这两种 Calvin-Benson 循环酶连接起来,形成一个自动抑制的超复合物。通过大小排阻色谱法,来自两种生物体的 NTRC 被证明可在体外控制该复合物的完整性,从而控制 PRK 和 GAPDH 在低温下的活性。因此,NTRC 显然还原 CP12,从而触发 PRK/CP12/GAPDH 复合物在低温下的解离。与 突变体一样,基于 CRISPR 的 突变体也表现出依赖氧化还原的耐寒表型。此外, 缺失导致 PRK 和 GAPDH 蛋白水平明显降低,暗示 CP12 具有蛋白保护作用。CP12 的这两种功能对于为快速响应环境变化而激活的酶储备提供了关键作用。这为冷适应提供了一个重要的机制。