Sprenger Heike, Kurowsky Christina, Horn Renate, Erban Alexander, Seddig Sylvia, Rudack Katharina, Fischer Axel, Walther Dirk, Zuther Ellen, Köhl Karin, Hincha Dirk K, Kopka Joachim
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany.
Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany.
Plant Cell Environ. 2016 Nov;39(11):2370-2389. doi: 10.1111/pce.12780. Epub 2016 Sep 6.
Systems responses to drought stress of four potato reference cultivars with differential drought tolerance (Solanum tuberosum L.) were investigated by metabolome profiling and RNA sequencing. Systems analysis was based on independent field and greenhouse trials. Robust differential drought responses across all cultivars under both conditions comprised changes of proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid and 102 transcript levels. The encoded genes contained a high proportion of heat shock proteins and proteins with signalling or regulatory functions, for example, a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant compared with the sensitive cultivars included arbutin, octopamine, ribitol and 248 transcripts. The gene products of many of these transcripts were pathogen response related, such as receptor kinases, or regulatory proteins, for example, a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply heat stress as a major acclimation component of potato leaves to long-term drought stress. Enhanced heat stress during drought can be caused by loss of transpiration cooling. This effect and CO limitation are the main consequences of drought-induced or abscisic acid-induced stomatal closure. Constitutive differences in metabolite and transcript levels between tolerant and sensitive cultivars indicate interactions of drought tolerance and pathogen resistance in potato.
通过代谢组分析和RNA测序,研究了四个具有不同耐旱性的马铃薯参考品种(Solanum tuberosum L.)对干旱胁迫的系统响应。系统分析基于独立的田间和温室试验。在这两种条件下,所有品种对干旱的强烈差异响应包括脯氨酸、棉子糖、半乳糖醇、阿拉伯糖醇、阿拉伯糖酸、绿原酸和102个转录水平的变化。编码的基因包含高比例的热休克蛋白和具有信号或调节功能的蛋白质,例如脱落酸受体PYL4的同源物。与敏感品种相比,耐旱品种的组成性差异包括熊果苷、章鱼胺、核糖醇和248个转录本。这些转录本中的许多基因产物与病原体反应相关,如受体激酶,或调节蛋白,例如拟南芥气孔细胞增殖的四唇MYB调节因子的同源物。功能富集分析表明热应激是马铃薯叶片对长期干旱胁迫的主要适应成分。干旱期间蒸腾冷却的丧失可导致热应激增强。这种效应和CO限制是干旱诱导或脱落酸诱导气孔关闭的主要后果。耐旱品种和敏感品种之间代谢物和转录水平的组成性差异表明马铃薯中耐旱性和病原体抗性之间存在相互作用。