Suppr超能文献

线粒体铁转运蛋白缺失会引发铁毒性、鞘脂合成以及丙酮酸脱氢酶激酶1/肌细胞增强因子2激活,进而导致神经退行性变。

Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration.

作者信息

Chen Kuchuan, Lin Guang, Haelterman Nele A, Ho Tammy Szu-Yu, Li Tongchao, Li Zhihong, Duraine Lita, Graham Brett H, Jaiswal Manish, Yamamoto Shinya, Rasband Matthew N, Bellen Hugo J

机构信息

Program in Developmental Biology, Baylor College of Medicine, Houston, United States.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.

出版信息

Elife. 2016 Jun 25;5:e16043. doi: 10.7554/eLife.16043.

Abstract

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.

摘要

弗里德赖希共济失调蛋白(FXN)的突变会导致弗里德赖希共济失调(FRDA),这是一种隐性神经退行性疾病。先前的研究表明,FXN的缺失会导致线粒体功能障碍,进而引发活性氧(ROS)水平升高并导致神经元死亡。在此,我们描述了一种不依赖ROS的机制,该机制在果蝇FXN突变体的神经退行性变中起作用。我们发现,果蝇中弗里德赖希共济失调蛋白同源物(fh)的缺失会导致铁毒性,进而诱导鞘脂合成并异位激活3-磷酸肌醇依赖性蛋白激酶-1(Pdk1)和肌细胞增强因子2(Mef2)。减轻铁毒性、用鞘氨醇霉素抑制鞘脂合成或降低Pdk1或Mef2水平,均可有效抑制fh突变体中的神经退行性变。此外,在哺乳动物神经元细胞系中,增加二氢鞘氨醇可通过PDK1激活Mef2活性,这表明该机制在进化上是保守的。我们的结果表明,铁/鞘脂/Pdk1/Mef2通路可能在FRDA中起作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd4b/4956409/c41d4dcde665/elife-16043-fig1.jpg

相似文献

2
Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals.
Elife. 2016 Nov 30;5:e20732. doi: 10.7554/eLife.20732.
3
Mitoferrin modulates iron toxicity in a Drosophila model of Friedreich's ataxia.
Free Radic Biol Med. 2015 Aug;85:71-82. doi: 10.1016/j.freeradbiomed.2015.03.014. Epub 2015 Apr 2.
4
A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin-like growth factor I.
Mol Cell Neurosci. 2017 Apr;80:100-110. doi: 10.1016/j.mcn.2017.02.008. Epub 2017 Mar 7.
5
Friedreich's ataxia: the vicious circle hypothesis revisited.
BMC Med. 2011 Oct 11;9:112. doi: 10.1186/1741-7015-9-112.
6
Models of Friedreich's Ataxia.
Biomed Res Int. 2018 Apr 5;2018:5065190. doi: 10.1155/2018/5065190. eCollection 2018.
7
Iron Pathophysiology in Friedreich's Ataxia.
Adv Exp Med Biol. 2019;1173:125-143. doi: 10.1007/978-981-13-9589-5_7.
8
Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich's ataxia.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):611-6. doi: 10.1073/pnas.0709691105. Epub 2008 Jan 9.
9
Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner.
J Neurogenet. 2017 Dec;31(4):189-202. doi: 10.1080/01677063.2017.1363200. Epub 2017 Aug 24.
10
Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia.
Hum Mol Genet. 2014 Feb 15;23(4):968-79. doi: 10.1093/hmg/ddt493. Epub 2013 Oct 8.

引用本文的文献

1
Ferroptosis in Cancer and Inflammatory Diseases: Mechanisms and Therapeutic Implications.
MedComm (2020). 2025 Sep 3;6(9):e70349. doi: 10.1002/mco2.70349. eCollection 2025 Sep.
2
Impacts of mitochondrial dysfunction on axonal microtubule bundles as a potential mechanism of neurodegeneration.
Front Neurosci. 2025 Aug 19;19:1631752. doi: 10.3389/fnins.2025.1631752. eCollection 2025.
3
A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels.
Nat Metab. 2023 Sep;5(9):1595-1614. doi: 10.1038/s42255-023-00873-0. Epub 2023 Aug 31.
4
What Is the Role of Ferroptosis in Neurodegeneration?
Neurology. 2023 Aug 15;101(7):312-319. doi: 10.1212/WNL.0000000000207730.
5
The buzz in the field: the interaction between viruses, mosquitoes, and metabolism.
Front Cell Infect Microbiol. 2023 Apr 26;13:1128577. doi: 10.3389/fcimb.2023.1128577. eCollection 2023.
6
Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light-induced damage in Drosophila.
PLoS Genet. 2023 Mar 23;19(3):e1010644. doi: 10.1371/journal.pgen.1010644. eCollection 2023 Mar.
7
Sphingolipids in neurodegenerative diseases.
Front Neurosci. 2023 Feb 16;17:1137893. doi: 10.3389/fnins.2023.1137893. eCollection 2023.
8
A new FRDA mouse model [ :YG8s(GAA) > 800] with more than 800 GAA repeats.
Front Neurosci. 2023 Jan 26;17:930422. doi: 10.3389/fnins.2023.930422. eCollection 2023.
9
SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia.
Brain. 2023 Apr 19;146(4):1420-1435. doi: 10.1093/brain/awac460.
10
Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia.
J Lipid Res. 2022 Sep;63(9):100255. doi: 10.1016/j.jlr.2022.100255. Epub 2022 Jul 16.

本文引用的文献

1
Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.
PLoS Biol. 2015 Jul 15;13(7):e1002197. doi: 10.1371/journal.pbio.1002197. eCollection 2015 Jul.
2
Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration.
Cell. 2015 Jan 15;160(1-2):177-90. doi: 10.1016/j.cell.2014.12.019.
4
Cerebellar pathology in Friedreich's ataxia: atrophied dentate nuclei with normal iron content.
Neuroimage Clin. 2014 Aug 23;6:93-9. doi: 10.1016/j.nicl.2014.08.018. eCollection 2014.
6
A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.
Cell. 2014 Sep 25;159(1):200-214. doi: 10.1016/j.cell.2014.09.002.
7
Large-scale identification of chemically induced mutations in Drosophila melanogaster.
Genome Res. 2014 Oct;24(10):1707-18. doi: 10.1101/gr.174615.114.
9
A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons.
PLoS Genet. 2013;9(12):e1003980. doi: 10.1371/journal.pgen.1003980. Epub 2013 Dec 12.
10
Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia.
Hum Mol Genet. 2014 Feb 15;23(4):968-79. doi: 10.1093/hmg/ddt493. Epub 2013 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验