Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
Wellcome Trust Centre for Neuroimaging, University College London, London, UK.
Wiley Interdiscip Rev Cogn Sci. 2018 May;9(3):e1460. doi: 10.1002/wcs.1460. Epub 2018 Jan 25.
Despite the success of modern neuroimaging techniques in furthering our understanding of cognitive and pathophysiological processes, translation of these advances into clinically relevant tools has been virtually absent until now. Neuromodeling represents a powerful framework for overcoming this translational deadlock, and the development of computational models to solve clinical problems has become a major scientific goal over the last decade, as reflected by the emergence of clinically oriented neuromodeling fields like Computational Psychiatry, Computational Neurology, and Computational Psychosomatics. Generative models of brain physiology and connectivity in the human brain play a key role in this endeavor, striving for computational assays that can be applied to neuroimaging data from individual patients for differential diagnosis and treatment prediction. In this review, we focus on dynamic causal modeling (DCM) and its use for Computational Psychiatry. DCM is a widely used generative modeling framework for functional magnetic resonance imaging (fMRI) and magneto-/electroencephalography (M/EEG) data. This article reviews the basic concepts of DCM, revisits examples where it has proven valuable for addressing clinically relevant questions, and critically discusses methodological challenges and recent methodological advances. We conclude this review with a more general discussion of the promises and pitfalls of generative models in Computational Psychiatry and highlight the path that lies ahead of us. This article is categorized under: Neuroscience > Computation Neuroscience > Clinical Neuroscience.
尽管现代神经影像学技术在深入了解认知和病理生理过程方面取得了成功,但直到现在,这些进展还几乎没有转化为临床相关的工具。神经建模代表了克服这种转化僵局的有力框架,在过去十年中,开发用于解决临床问题的计算模型已成为一个主要的科学目标,这反映在计算精神病学、计算神经病学和计算身心医学等以临床为导向的神经建模领域的出现上。人类大脑中脑生理学和连接的生成模型在这方面起着关键作用,努力开发可应用于个体患者神经影像学数据的计算分析,以进行鉴别诊断和治疗预测。在这篇综述中,我们重点介绍动态因果建模(DCM)及其在计算精神病学中的应用。DCM 是一种广泛用于功能磁共振成像(fMRI)和磁共振/脑电图(M/EEG)数据的生成建模框架。本文回顾了 DCM 的基本概念,重新审视了它在解决与临床相关问题方面证明有价值的示例,并批判性地讨论了方法学挑战和最近的方法学进展。我们以更一般性地讨论计算精神病学中生成模型的优缺点结束了这篇综述,并强调了摆在我们面前的道路。本文属于以下类别: 神经科学 > 计算神经科学 > 临床神经科学。