van Oosterzee Anna
Utrecht University, Utrecht, The Netherlands.
AI Soc. 2025;40(6):5077-5086. doi: 10.1007/s00146-024-02012-z. Epub 2024 Aug 2.
Machine learning (ML) has emerged as a promising tool in psychiatry, revolutionising diagnostic processes and patient outcomes. In this paper, I argue that while ML studies show promising initial results, their application in mimicking clinician-based judgements presents inherent limitations (Shatte et al. in Psychol Med 49:1426-1448. 10.1017/S0033291719000151, 2019). Most models still rely on DSM (the Diagnostic and Statistical Manual of Mental Disorders) categories, known for their heterogeneity and low predictive value. DSM's descriptive nature limits the validity of psychiatric diagnoses, which leads to overdiagnosis, comorbidity, and low remission rates. The application in psychiatry highlights the limitations of supervised ML techniques. Supervised ML models inherit the validity issues of their training data set. When the model's outcome is a DSM classification, this can never be more valid or predictive than the clinician's judgement. Therefore, I argue that these models have little added value to the patient. Moreover, the lack of known underlying causal pathways in psychiatric disorders prevents validating ML models based on such classifications. As such, I argue that high accuracy in these models is misleading when it is understood as validating the classification. In conclusion, these models will not will not offer any real benefit to patient outcomes. I propose a shift in focus, advocating for ML models to prioritise improving the predictability of prognosis, treatment selection, and prevention. Therefore, data selection and outcome variables should be geared towards this transdiagnostic goal. This way, ML can be leveraged to better support clinicians in personalised treatment strategies for mental health patients.
机器学习(ML)已成为精神病学领域一种颇具前景的工具,正在彻底改变诊断流程和患者治疗结果。在本文中,我认为尽管机器学习研究显示出了令人鼓舞的初步成果,但它们在模仿基于临床医生的判断方面的应用存在固有的局限性(沙特等人,《心理医学》49:1426 - 1448。10.1017/S0033291719000151,2019)。大多数模型仍然依赖于《精神疾病诊断与统计手册》(DSM)的类别,这些类别以其异质性和低预测价值而闻名。DSM的描述性本质限制了精神疾病诊断的有效性,这导致了过度诊断、共病和低缓解率。在精神病学中的应用凸显了监督式机器学习技术的局限性。监督式机器学习模型继承了其训练数据集的有效性问题。当模型的结果是DSM分类时,这永远不会比临床医生的判断更有效或更具预测性。因此,我认为这些模型对患者几乎没有附加价值。此外,精神疾病中缺乏已知的潜在因果途径阻碍了基于此类分类对机器学习模型进行验证。因此,我认为当这些模型的高精度被理解为对分类的验证时,会产生误导。总之,这些模型不会给患者治疗结果带来任何实际益处。我提议转变重点,倡导机器学习模型优先提高预后、治疗选择和预防的可预测性。因此,数据选择和结果变量应朝着这个跨诊断目标进行调整。通过这种方式,可以利用机器学习更好地支持临床医生为心理健康患者制定个性化治疗策略。