Suppr超能文献

在活体人类视网膜中测量的视锥光感受器镶嵌结构的组织。

The organization of the cone photoreceptor mosaic measured in the living human retina.

作者信息

Sawides Lucie, de Castro Alberto, Burns Stephen A

机构信息

School of Optometry, Indiana University, 800E. Atwater Av., Bloomington, IN 47405, United States.

School of Optometry, Indiana University, 800E. Atwater Av., Bloomington, IN 47405, United States.

出版信息

Vision Res. 2017 Mar;132:34-44. doi: 10.1016/j.visres.2016.06.006. Epub 2016 Aug 3.

Abstract

The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone geometric arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina shows a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones.

摘要

视锥光感受器是获取视觉信息的初始基本采样步骤。虽然自适应光学技术的最新进展已经越来越精确地估计了活体人类视网膜中视锥光感受器的堆积密度和间距,但除了趋向于六边形堆积之外,对于局部视锥几何排列知之甚少。我们分析了10名正常受试者数据中的视锥镶嵌图。应用了一种技术来计算局部平均视锥镶嵌结构,这使我们能够确定局部区域的六边形特征、间距和方向。利用视锥间距估计值,我们发现视锥密度随视网膜偏心度的增加而预期降低,并且沿水平子午线的密度高于垂直子午线。方向分析揭示了六边形堆积中局部视锥间距的不对称性,视锥在水平方向上具有更大的局部间距。这种水平/垂直不对称性在上半子午线大于2度和下半子午线大于2.5度的偏心度处发生改变。对视网膜中央1.4°范围内六边形方向的分析表明,方向有局部连贯的趋势,方向斑块由35至240个视锥组成。

相似文献

1
The organization of the cone photoreceptor mosaic measured in the living human retina.
Vision Res. 2017 Mar;132:34-44. doi: 10.1016/j.visres.2016.06.006. Epub 2016 Aug 3.
2
Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones.
Ophthalmic Physiol Opt. 2013 Jul;33(4):516-26. doi: 10.1111/opo.12053. Epub 2013 Mar 29.
3
Cone photoreceptor definition on adaptive optics retinal imaging.
Br J Ophthalmol. 2014 Aug;98(8):1073-9. doi: 10.1136/bjophthalmol-2013-304615. Epub 2014 Apr 11.
4
Distribution of cone density, spacing and arrangement in adult healthy retinas with adaptive optics flood illumination.
PLoS One. 2018 Jan 16;13(1):e0191141. doi: 10.1371/journal.pone.0191141. eCollection 2018.
5
Variation of cone photoreceptor packing density with retinal eccentricity and age.
Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7376-84. doi: 10.1167/iovs.11-7199. Print 2011 Sep.
6
Visual resolution and cone spacing in the nasal and inferior retina.
Ophthalmic Physiol Opt. 2018 Jan;38(1):66-75. doi: 10.1111/opo.12424.
7
Distribution of mid-peripheral cones in emmetropic and myopic subjects using adaptive optics flood illumination camera.
Ophthalmic Physiol Opt. 2019 Mar;39(2):94-103. doi: 10.1111/opo.12604. Epub 2019 Jan 29.
10

引用本文的文献

1
3D-printed phantoms for measuring lateral resolution and contrast performance of ophthalmic adaptive optics imaging systems.
Biomed Opt Express. 2025 Jun 10;16(7):2692-2708. doi: 10.1364/BOE.551755. eCollection 2025 Jul 1.
2
Single cones give rise to multi-cone types in the retinas of fishes.
Sci Rep. 2025 Mar 6;15(1):7823. doi: 10.1038/s41598-025-91987-w.
3
Modeling Human Macular Cone Photoreceptor Spatial Distribution.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):14. doi: 10.1167/iovs.65.8.14.
4
Mimicking the retinal neuron functions by a photoresponsive single transistor with a double gate.
Biophys J. 2024 Jul 2;123(13):1804-1814. doi: 10.1016/j.bpj.2024.05.023. Epub 2024 May 23.
5
Automatic montaging of adaptive optics SLO retinal images based on graph theory.
Biomed Opt Express. 2024 Jan 25;15(2):1021-1037. doi: 10.1364/BOE.505013. eCollection 2024 Feb 1.
6
Change in Cone Structure Over 24 Months in USH2A-Related Retinal Degeneration.
Am J Ophthalmol. 2023 Aug;252:77-93. doi: 10.1016/j.ajo.2023.03.006. Epub 2023 Mar 21.
8
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
9
Automatic quantification of cone photoreceptors in adaptive optics scanning light ophthalmoscope images using multi-task learning.
Biomed Opt Express. 2022 Sep 9;13(10):5187-5201. doi: 10.1364/BOE.471426. eCollection 2022 Oct 1.
10
Retinal magnification factors at the fixation locus derived from schematic eyes with four individualized surfaces.
Biomed Opt Express. 2022 Jun 8;13(7):3786-3808. doi: 10.1364/BOE.460553. eCollection 2022 Jul 1.

本文引用的文献

1
Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1. doi: 10.1016/j.ajo.2015.04.034. Epub 2015 Apr 30.
2
In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy.
Biomed Opt Express. 2014 Feb 27;5(3):961-74. doi: 10.1364/BOE.5.000961. eCollection 2014 Mar 1.
3
Automatic cone photoreceptor segmentation using graph theory and dynamic programming.
Biomed Opt Express. 2013 May 22;4(6):924-37. doi: 10.1364/BOE.4.000924. Print 2013 Jun 1.
4
Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images.
Ophthalmic Physiol Opt. 2013 Jul;33(4):540-9. doi: 10.1111/opo.12070. Epub 2013 May 13.
5
Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones.
Ophthalmic Physiol Opt. 2013 Jul;33(4):516-26. doi: 10.1111/opo.12053. Epub 2013 Mar 29.
6
Interocular symmetry of parafoveal photoreceptor cone density distribution.
Retina. 2013 Sep;33(8):1640-9. doi: 10.1097/IAE.0b013e3182807642.
7
Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone.
Prog Retin Eye Res. 2013 Jul;35:63-81. doi: 10.1016/j.preteyeres.2013.01.005. Epub 2013 Mar 15.
9
Histologic development of the human fovea from midgestation to maturity.
Am J Ophthalmol. 2012 Nov;154(5):767-778.e2. doi: 10.1016/j.ajo.2012.05.007. Epub 2012 Aug 28.
10
Repeatability of in vivo parafoveal cone density and spacing measurements.
Optom Vis Sci. 2012 May;89(5):632-43. doi: 10.1097/OPX.0b013e3182540562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验