Suppr超能文献

使用递归随机森林预测小鼠肝脏毒性的化学和体外生物学信息。

Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests.

作者信息

Zhu X-W, Xin Y-J, Chen Q-H

机构信息

a College of Resource and Environment, Qingdao Agricultural University , Qingdao , China.

b Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University , Qingdao , China.

出版信息

SAR QSAR Environ Res. 2016 Jul;27(7):559-72. doi: 10.1080/1062936X.2016.1201142. Epub 2016 Jun 29.

Abstract

In this study, recursive random forests were used to build classification models for mouse liver toxicity. The mouse liver toxicity endpoint (67 toxic and 166 non-toxic) was a composition of four in vivo chronic systemic and carcinogenic toxicity endpoints (non-proliferative, neoplastic, proliferative and gross pathology). A multiple under-sampling approach and a shifted classification threshold of 0.288 (non-toxic < 0.288 and toxic ≥ 0.288) were used to cope with the unbalanced data. Our study showed that recursive random forests are very efficient in variable selection and for the development of predictive in silico models. Generally, over 95% redundant descriptors could be reduced from modelling for all the chemical, biological and hybrid models in this study. The predictive performance of chemical models (CCR of 0.73) is comparable with hybrid model performance (CCR of 0.74). Descriptors related to the octanol-water partition coefficient are vital for model performance. The in vitro endpoint of CYP2A2 played a key role in the development and interpretation of hybrid models. Identifying high-throughput screening assays relevant to liver toxicity would be key for improving in silico models of liver toxicity.

摘要

在本研究中,递归随机森林被用于构建小鼠肝脏毒性的分类模型。小鼠肝脏毒性终点(67个有毒和166个无毒)由四个体内慢性全身和致癌毒性终点(非增殖性、肿瘤性、增殖性和大体病理学)组成。采用多重欠采样方法和0.288的移动分类阈值(无毒<0.288且有毒≥0.288)来处理不平衡数据。我们的研究表明,递归随机森林在变量选择和开发预测性计算机模型方面非常有效。一般来说,本研究中所有化学、生物和混合模型的建模过程中,超过95%的冗余描述符可以被减少。化学模型的预测性能(CCR为0.73)与混合模型性能(CCR为0.74)相当。与辛醇-水分配系数相关的描述符对模型性能至关重要。CYP2A2的体外终点在混合模型的开发和解释中起关键作用。确定与肝脏毒性相关的高通量筛选试验将是改进肝脏毒性计算机模型的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验