Suppr超能文献

通过整合化学结构的数值描述符和短期毒性测定数据来预测化学危害。

Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data.

机构信息

Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

出版信息

Toxicol Sci. 2012 May;127(1):1-9. doi: 10.1093/toxsci/kfs095. Epub 2012 Mar 2.

Abstract

Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR-like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage.

摘要

定量构效关系(QSAR)模型广泛用于药物候选物或环境化学物质体内毒性的计算预测,为药物开发中的候选物选择或寻找商业用化学品更具危害性和更可持续的替代品增加了价值。传统 QSAR 模型的发展得益于代表固有化学性质的数值描述符,这些描述符可以很容易地为任意数量的分子定义;然而,由于缺乏数据和体内终点的复杂性,传统的 QSAR 模型通常具有有限的预测能力。尽管过去确实难以获得大量化学物质的实验衍生毒性数据,但现在已经可以获得数百个实验系统中数千种环境化学物质的定量体外筛选结果,并且这些结果还在不断积累。此外,数百种化学物质的公开可获取毒理学基因组学数据提供了分子信息的另一个维度,对于预测毒性建模可能是有用的。这些源自短期生物测定(即体外筛选和/或体内毒理学基因组学数据)的分子生物活性的新特征现在可以与化学结构信息结合使用,以生成混合 QSAR 样定量模型来预测人类毒性和致癌性。我们通过几个案例研究说明了混合建模方法的好处,即提高了模型的准确性、增强了对最具预测性特征的解释以及扩大了更广泛化学空间覆盖范围的适用性域。

相似文献

2
From QSAR to QSIIR: searching for enhanced computational toxicology models.
Methods Mol Biol. 2013;930:53-65. doi: 10.1007/978-1-62703-059-5_3.
3
Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
Toxicol Appl Pharmacol. 2007 Jul 1;222(1):1-16. doi: 10.1016/j.taap.2007.03.012. Epub 2007 Mar 24.
4
6
In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
Methods Mol Biol. 2016;1425:361-81. doi: 10.1007/978-1-4939-3609-0_16.
9
A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity.
SAR QSAR Environ Res. 2006 Aug;17(4):413-28. doi: 10.1080/10629360600884371.
10
A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
Regul Toxicol Pharmacol. 2016 Jun;77:282-91. doi: 10.1016/j.yrtph.2016.03.014. Epub 2016 Mar 25.

引用本文的文献

1
Advances and challenges in drug design against dental caries: Application of approaches.
J Pharm Anal. 2025 Jun;15(6):101161. doi: 10.1016/j.jpha.2024.101161. Epub 2024 Dec 9.
3
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!
J Toxicol Environ Health B Crit Rev. 2025 Jan 2;28(1):28-62. doi: 10.1080/10937404.2024.2412571. Epub 2024 Oct 10.
6
The evolving role of investigative toxicology in the pharmaceutical industry.
Nat Rev Drug Discov. 2023 Apr;22(4):317-335. doi: 10.1038/s41573-022-00633-x. Epub 2023 Feb 13.
7
Machine Learning Models for Predicting Liver Toxicity.
Methods Mol Biol. 2022;2425:393-415. doi: 10.1007/978-1-0716-1960-5_15.
8
Progress in data interoperability to support computational toxicology and chemical safety evaluation.
Toxicol Appl Pharmacol. 2019 Oct 1;380:114707. doi: 10.1016/j.taap.2019.114707. Epub 2019 Aug 9.
9
Multi-dimensional in vitro bioactivity profiling for grouping of glycol ethers.
Regul Toxicol Pharmacol. 2019 Feb;101:91-102. doi: 10.1016/j.yrtph.2018.11.011. Epub 2018 Nov 22.
10
Nanomedicine: Principles, Properties, and Regulatory Issues.
Front Chem. 2018 Aug 20;6:360. doi: 10.3389/fchem.2018.00360. eCollection 2018.

本文引用的文献

1
Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model.
Toxicol Sci. 2012 Apr;126(2):578-88. doi: 10.1093/toxsci/kfs023. Epub 2012 Jan 19.
2
Zebrafish developmental screening of the ToxCast™ Phase I chemical library.
Reprod Toxicol. 2012 Apr;33(2):174-87. doi: 10.1016/j.reprotox.2011.10.018. Epub 2011 Dec 9.
3
Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data.
Toxicol Sci. 2011 Nov;124(1):109-27. doi: 10.1093/toxsci/kfr220. Epub 2011 Aug 26.
5
Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database.
Toxicol Appl Pharmacol. 2011 Sep 15;255(3):297-306. doi: 10.1016/j.taap.2011.07.001. Epub 2011 Jul 19.
6
Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches.
Chem Res Toxicol. 2011 Aug 15;24(8):1251-62. doi: 10.1021/tx200148a. Epub 2011 Jul 21.
7
Gene expression-based in vivo and in vitro prediction of liver toxicity allows compound selection at an early stage of drug development.
J Biochem Mol Toxicol. 2011 May-Jun;25(3):183-94. doi: 10.1002/jbt.20375. Epub 2010 Nov 12.
9
Predictive model of rat reproductive toxicity from ToxCast high throughput screening.
Biol Reprod. 2011 Aug;85(2):327-39. doi: 10.1095/biolreprod.111.090977. Epub 2011 May 12.
10
Chemical genomics profiling of environmental chemical modulation of human nuclear receptors.
Environ Health Perspect. 2011 Aug;119(8):1142-8. doi: 10.1289/ehp.1002952. Epub 2011 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验