Pérez-Flórez Mauricio, Ocampo Clara Beatriz, Valderrama-Ardila Carlos, Alexander Neal
Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.
Pontificia Universidad Javeriana, Cali, Colombia.
Mem Inst Oswaldo Cruz. 2016 Jun 27;0(7):0. doi: 10.1590/0074-02760160074.
The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America.
本研究的目的是确定哥伦比亚皮肤利什曼病(CL)的环境风险因素,并绘制高风险城市地图。研究区域为哥伦比亚安第斯地区,包括715个农村和城市。我们使用了2000年至2009年这10年的CL监测数据。我们在贝叶斯框架下采用时空分析——条件自回归泊松随机效应模型——来模拟城市层面发病率与土地利用、气候、海拔和人口密度之间的相关性。双变量空间分析确定雨林、森林和次生植被、温度以及年降水量与CL发病率呈正相关。相比之下,畜牧农业生态系统和温度季节性呈负相关。多变量分析确定土地利用——雨林和农牧——以及气候——温度、降雨和温度季节性——是CL的最佳预测因素。我们得出结论,气候和土地利用可用于识别CL高风险地区,并且这种方法可能适用于拉丁美洲的其他地区。