Suppr超能文献

Mpath 图谱多分支单细胞轨迹,揭示发育过程中祖细胞的演进。

Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development.

机构信息

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06, Singapore 138648, Singapore.

出版信息

Nat Commun. 2016 Jun 30;7:11988. doi: 10.1038/ncomms11988.

Abstract

Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data.

摘要

单细胞 RNA 测序为细胞分化和发育过程中状态转变的连续体提供了前所未有的分辨率。然而,从单细胞数据构建多分支细胞谱系的工具是有限的。在这里,我们提出了 Mpath,这是一种使用基于邻域的细胞状态转变来推导多分支发育轨迹的算法。应用于小鼠传统树突状细胞 (cDC) 祖细胞,Mpath 构建了从巨噬细胞/DC 祖细胞到共同 DC 祖细胞再到前树突状细胞 (preDC) 的多分支轨迹。Mpath 生成的轨迹在 preDC 阶段检测到一个分支事件,揭示了专门向 cDC1 或 cDC2 谱系分化的 preDC 亚群。沿着 cDC 发育重新排列细胞揭示了基因调控的顺序波和细胞周期与 cDC 分化之间的时间耦合。应用于人类成肌细胞,Mpath 再现了成肌细胞分化的时间过程,并分离出一条参与分化的非肌肉细胞分支。我们的研究表明,Mpath 是从单细胞数据构建细胞谱系的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14a/4931327/b03495cbbd47/ncomms11988-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验