Liao Xu, Kang Lican, Peng Yihao, Chai Xiaoran, Xie Peng, Lin Chengqi, Ji Hongkai, Jiao Yuling, Liu Jin
School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China.
Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.
Nat Commun. 2024 Dec 30;15(1):10849. doi: 10.1038/s41467-024-55146-5.
Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results. Here, we present SDEvelo, a generative approach to inferring RNA velocity by modeling the dynamics of unspliced and spliced RNAs via multivariate stochastic differential equations (SDE). Uniquely, SDEvelo explicitly models inherent uncertainty in transcriptional dynamics while estimating a cell-specific latent time across genes. Using both simulated and four scRNA-seq and spatial transcriptomics datasets, we show that SDEvelo can model the random dynamic patterns of mature-state cells while accurately detecting carcinogenesis. Additionally, the estimated gene-shared latent time can facilitate many downstream analyses for biological discovery. We demonstrate that SDEvelo is computationally scalable and applicable to both scRNA-seq and sequencing-based spatial transcriptomics data.
最近,RNA速度推动了单细胞RNA测序(scRNA-seq)研究的范式转变,使得在细胞分化和状态转变中能够重建和预测定向轨迹。大多数现有的动态建模方法对单个基因使用常微分方程(ODE),而未应用多变量方法。然而,这种建模策略不足以捕捉多个基因中由细胞特异性潜在时间控制的转录动力学的内在随机性,可能导致错误结果。在此,我们提出了SDEvelo,这是一种通过多变量随机微分方程(SDE)对未剪接和剪接RNA的动力学进行建模来推断RNA速度的生成方法。独特的是,SDEvelo在估计跨基因的细胞特异性潜在时间的同时,明确地对转录动力学中的固有不确定性进行建模。使用模拟数据集以及四个scRNA-seq和空间转录组学数据集,我们表明SDEvelo可以对成熟状态细胞的随机动态模式进行建模,同时准确检测癌变。此外,估计的基因共享潜在时间可以促进许多用于生物学发现的下游分析。我们证明SDEvelo在计算上具有可扩展性,并且适用于scRNA-seq和基于测序的空间转录组学数据。