Cousido-Siah Alexandra, Ruiz Francesc X, Fanfrlík Jindřich, Giménez-Dejoz Joan, Mitschler André, Kamlar Martin, Veselý Jan, Ajani Haresh, Parés Xavier, Farrés Jaume, Hobza Pavel, Podjarny Alberto D
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS , 1 rue Laurent Fries 67404 CEDEX Illkirch, France.
Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona , E-08193 Bellaterra, Barcelona, Spain.
ACS Chem Biol. 2016 Oct 21;11(10):2693-2705. doi: 10.1021/acschembio.6b00382. Epub 2016 Aug 5.
Human enzyme aldo-keto reductase family member 1B10 (AKR1B10) has evolved as a tumor marker and promising antineoplastic target. It shares high structural similarity with the diabetes target enzyme aldose reductase (AR). Starting from the potent AR inhibitor IDD388, we have synthesized a series of derivatives bearing the same halophenoxyacetic acid moiety with an increasing number of bromine (Br) atoms on its aryl moiety. Next, by means of IC measurements, X-ray crystallography, WaterMap analysis, and advanced binding free energy calculations with a quantum-mechanical (QM) approach, we have studied their structure-activity relationship (SAR) against both enzymes. The introduction of Br substituents decreases AR inhibition potency but improves it in the case of AKR1B10. Indeed, the Br atoms in ortho position may impede these drugs to fit into the AR prototypical specificity pocket. For AKR1B10, the smaller aryl moieties of MK181 and IDD388 can bind into the external loop A subpocket. Instead, the bulkier MK184, MK319, and MK204 open an inner specificity pocket in AKR1B10 characterized by a π-π stacking interaction of their aryl moieties and Trp112 side chain in the native conformation (not possible in AR). Among the three compounds, only MK204 can make a strong halogen bond with the protein (-4.4 kcal/mol, using QM calculations), while presenting the lowest desolvation cost among all the series, translated into the most selective and inhibitory potency AKR1B10 (IC = 80 nM). Overall, SAR of these IDD388 polyhalogenated derivatives have unveiled several distinctive AKR1B10 features (shape, flexibility, hydration) that can be exploited to design novel types of AKR1B10 selective drugs.
人类酶醛糖酮还原酶家族成员1B10(AKR1B10)已发展成为一种肿瘤标志物和有前景的抗肿瘤靶点。它与糖尿病靶点酶醛糖还原酶(AR)具有高度的结构相似性。从强效AR抑制剂IDD388出发,我们合成了一系列带有相同卤代苯氧基乙酸部分的衍生物,其芳基部分的溴(Br)原子数量不断增加。接下来,通过IC测量、X射线晶体学、WaterMap分析以及采用量子力学(QM)方法的高级结合自由能计算,我们研究了它们对这两种酶的构效关系(SAR)。Br取代基的引入降低了对AR的抑制效力,但在AKR1B10的情况下有所提高。实际上,邻位的Br原子可能会阻碍这些药物进入AR的典型特异性口袋。对于AKR1B10,MK181和IDD388较小的芳基部分可以结合到外环A亚口袋中。相反,体积较大的MK184、MK319和MK204在AKR1B10中打开了一个内部特异性口袋,其特征是它们的芳基部分与天然构象中的Trp112侧链存在π-π堆积相互作用(在AR中不可能)。在这三种化合物中,只有MK204能与蛋白质形成强卤素键(使用QM计算为-4.4 kcal/mol),同时在所有系列中具有最低的去溶剂化成本,这转化为对AKR1B10最具选择性和抑制效力(IC = 80 nM)。总体而言,这些IDD388多卤代衍生物的SAR揭示了几个独特的AKR1B10特征(形状、柔韧性、水合作用),可用于设计新型的AKR1B10选择性药物。