Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
Biosens Bioelectron. 2016 Dec 15;86:150-155. doi: 10.1016/j.bios.2016.06.044. Epub 2016 Jun 15.
In an effort to develop new tools for diagnosing influenza in resource-limited settings, we fabricated a polycarbonate (PC)-polydimethylsiloxane (PDMS) hybrid microchip using a simple epoxy silica sol-gel coating/bonding method and employed it in sensitive detection of influenza virus with Europium nanoparticles (EuNPs). The incorporation of sol-gel material in device fabrication provided functionalized channel surfaces ready for covalent immobilization of primary antibodies and a strong bonding between PDMS substrates and PC supports without increasing background fluorescence. In microchip EuNP immunoassay (µENIA) of inactivated influenza viruses, replacing native PDMS microchips with hybrid microchips allowed the achievement of a 6-fold increase in signal-to-background ratio, a 12-fold and a 6-fold decreases in limit-of-detection (LOD) in influenza A and B tests respectively. Using influenza A samples with known titers, the LOD of influenza µENIA on hybrid microchips was determined to be ~10(4) TCID50 titer/mL and 10(3)-10(4) EID50 titer/mL. A comparison test indicated that the sensitivity of influenza µENIA enhanced using the hybrid microchips even surpassed that of a commercial laboratory influenza ELISA test. In addition to the sensitivity improvement, assay variation was clearly reduced when hybrid microchips instead of native PDMS microchips were used in the µENIA tests. Finally, infectious reference viruses and nasopharyngeal swab patient specimens were successfully tested using μENIA on hybrid microchip platforms, demonstrating the potential of this unique microchip nanoparticle assay in clinical diagnosis of influenza. Meanwhile, the tests showed the necessity of using nucleic acid confirmatory tests to clarify ambiguous test results obtained from prototype or developed point-of-care testing devices for influenza diagnosis.
为了开发在资源有限环境下诊断流感的新工具,我们使用简单的环氧硅溶胶-凝胶涂覆/键合方法制造了聚碳酸酯(PC)-聚二甲基硅氧烷(PDMS)混合微芯片,并将其用于EuNPs 对流感病毒的灵敏检测。溶胶-凝胶材料的加入使器件制造具有功能化的通道表面,便于主抗体的共价固定,以及 PDMS 基底和 PC 支撑物之间的强键合,而不会增加背景荧光。在微芯片 EuNP 免疫测定(µENIA)中,用混合微芯片替代原生 PDMS 微芯片可使信号背景比提高 6 倍,流感 A 和 B 检测的检测限(LOD)分别降低 12 倍和 6 倍。使用具有已知滴度的流感 A 样本,确定流感µENIA 在混合微芯片上的 LOD 约为 10(4)TCID50 滴度/mL 和 10(3)-10(4)EID50 滴度/mL。对比测试表明,使用混合微芯片增强的流感µENIA 灵敏度甚至超过了商业实验室流感 ELISA 测试。除了灵敏度提高外,当在µENIA 测试中使用混合微芯片而不是原生 PDMS 微芯片时,测定的变化明显减少。最后,成功地使用混合微芯片上的μENIA 对传染性参考病毒和鼻咽拭子患者标本进行了测试,证明了这种独特的微芯片纳米粒子测定法在流感临床诊断中的潜力。同时,这些测试表明,使用核酸确认测试来澄清流感诊断原型或开发即时检测设备的测试结果不明确的必要性。