Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT) , 9 Wenyuan Road, Nanjing 210023, China.
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China.
ACS Appl Mater Interfaces. 2016 Jul 27;8(29):18969-77. doi: 10.1021/acsami.6b03792. Epub 2016 Jul 12.
Despite remarkable advances in the development of organic field-effect transistor (OFET) memories over recent years, the charge trapping elements remain confined to the critical electrets of polymers, nanoparticles, or ferroelectrics. Nevertheless, rare reports are available on the complementary advantages of different types of trapping elements integrated in one single OFET memory. To address this issue, we fabricated two kinds of pentacene-based OFET memories with solution-processed amorphous and β-phase poly(9,9-dioctylfluorene) (PFO) films as charge trapping layers, respectively. Compared to the amorphous film, the β-PFO film has self-doped nanostructures (20-120 nm) and could act as natural charge trapping elements, demonstrating the synergistic effects of combining both merits of polymer and nanoparticles into one electret. Consequently, the OFET memory with β-PFO showed nearly 26% increment in the storage capacity and a pronounced memory window of ∼45 V in 20 ms programming time. Besides, the retention time of β-PFO device extended 2 times to maintain an ON/OFF current ratio of 10(3), indicating high bias-stress reliability. Furthermore, the β-PFO device demonstrated good photosensitivity in the 430-700 nm range, which was attributed to the additive effect of smaller bandgap and self-doped nanostructures of β-phase. In this regard, the tuning of molecular conformation and aggregation in a polymer electret is an effective strategy to obtain a high performance OFET memory.
尽管近年来有机场效应晶体管 (OFET) 存储器的发展取得了显著进展,但电荷俘获元件仍然局限于聚合物、纳米粒子或铁电体的关键驻极体。然而,关于不同类型的俘获元件集成在单个 OFET 存储器中互补优势的报道很少。为了解决这个问题,我们分别使用溶液处理的无定形和 β 相聚(9,9-二辛基芴) (PFO) 薄膜作为电荷俘获层,制造了两种基于五苯的 OFET 存储器。与无定形薄膜相比,β-PFO 薄膜具有自掺杂纳米结构(20-120nm),可以作为天然电荷俘获元件,展示了将聚合物和纳米粒子的优点结合到一个驻极体中的协同效应。因此,具有β-PFO 的 OFET 存储器的存储容量增加了近 26%,在 20ms 的编程时间内具有明显的 45V 记忆窗口。此外,β-PFO 器件的保持时间延长了 2 倍,以保持 10(3)的 ON/OFF 电流比,表明具有高偏压稳定性。此外,β-PFO 器件在 430-700nm 范围内表现出良好的光敏感性,这归因于β 相较小的能带隙和自掺杂纳米结构的附加效应。在这方面,通过调节聚合物驻极体中的分子构象和聚集,可以获得高性能的 OFET 存储器。