Suppr超能文献

固定化酶催化颗粒中死核的出现:米氏动力学分析及数值方法评估

Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

作者信息

Pereira Félix Monteiro, Oliveira Samuel Conceição

机构信息

Departamento de Engenharia Química, Escola de Engenharia de Lorena, USP-Universidade de São Paulo, Estrada Municipal do Campinho, 12602-810, Lorena, SP, Brazil.

Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas, UNESP-Univ Estadual Paulista, Rodovia Araraquara-Jaú Km 1, 14800-903, Araraquara, SP, Brazil.

出版信息

Bioprocess Biosyst Eng. 2016 Nov;39(11):1717-27. doi: 10.1007/s00449-016-1647-0. Epub 2016 Jun 30.

Abstract

In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

摘要

在本文中,针对米氏动力学分析了含有固定化酶的催化颗粒中死核的出现情况。对数值方法进行了评估,以求解在稳态和等温条件下扩散与反应过程数学建模所产生的边值问题。采用了两类数值方法:打靶法和配置法。打靶法使用了Scilab软件中的ode函数。配置法包括:由Scilab的bvode函数实现的方法、正交配置法以及有限元上的正交配置法。这些方法针对米氏方程的简化形式(零级和一级动力学)进行了验证,对于这些简化形式存在解析解。在本文所涵盖的方法中,有限元上的正交配置法被证明是求解与米氏动力学相关边值问题的最稳健且高效的方法。对于这种酶动力学,发现当催化颗粒内的扩散 - 反应满足特定条件时会出现死核。本研究中提出的概念和方法的应用将有助于对非均相酶反应器进行更广义的分析和更精确的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验