Suppr超能文献

振荡和生长系统中的稳态假设。

The steady-state assumption in oscillating and growing systems.

作者信息

Reimers Alexandra-M, Reimers Arne C

机构信息

Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany; International Max Planck Research School for Computational Biology and Scientific Computing, Max Planck Institute for Molecular Genetics, Ihnestr 63-73, 14195 Berlin, Germany.

Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands.

出版信息

J Theor Biol. 2016 Oct 7;406:176-86. doi: 10.1016/j.jtbi.2016.06.031. Epub 2016 Jun 27.

Abstract

The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.

摘要

稳态假设指出细胞内代谢物的产生和消耗是平衡的,这是能够对基因组规模代谢网络进行有效分析的关键方面之一。它可以从两个不同的角度来理解。从时间尺度的角度来看,我们利用这样一个事实,即新陈代谢比其他细胞过程(如基因表达)快得多。因此,稳态假设是作为新陈代谢的一种准稳态近似推导出来的,它适应不断变化的细胞条件。在本文中,我们关注第二个角度,即从长远来看,没有代谢物会积累或耗尽。与第一个角度不同的是,目前尚不清楚如何从数学上捕捉这个角度,以及需要哪些假设来获得稳态条件。通过提出一个基于第二个角度的数学框架,我们证明了稳态假设也适用于振荡和生长系统,而无需在任何时间点都达到准稳态。然而,我们也表明平均浓度可能与平均通量不兼容。总之,我们为长时间的稳态假设建立了一个数学基础,证明了它在许多应用中的成功使用是合理的。此外,这个数学基础还指出了在长时间将代谢物浓度的非线性约束整合到稳态模型中时出现的非直观效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验