Li Xiaoyu, Scott Thomas, Yang Shao, Cromer Chris, Dowell Marla
National Institute of Standards and Technology, Boulder, CO 80305.
J Res Natl Inst Stand Technol. 2004 Aug 1;109(4):429-34. doi: 10.6028/jres.109.030. Print 2004 Jul-Aug.
We briefly explain the fundamentals of detector nonlinearity applicable to both electrical and optical nonlinearity measurements. We specifically discuss the attenuation method for optical nonlinearity measurement that the NIST system is based upon, and we review the possible sources of nonlinearity inherent to thermal detectors used with high-power lasers. We also describe, in detail, the NIST nonlinearity measurement system, in which detector responsivity can be measured at wavelengths of 1.06 µm and 10.6 µm, over a power range from 1 W to 1000 W. We present the data processing method used and show measurement results depicting both positive and negative nonlinear behavior. The expanded uncertainty of a typical NIST high-power laser detector calibration including nonlinearity characterization is about 1.3 %.
我们简要解释适用于电学和光学非线性测量的探测器非线性的基本原理。我们具体讨论了美国国家标准与技术研究院(NIST)系统所基于的光学非线性测量的衰减方法,并回顾了与高功率激光器一起使用的热探测器固有的非线性的可能来源。我们还详细描述了NIST非线性测量系统,在该系统中,可以在1.06 µm和10.6 µm的波长下,在1 W至1000 W的功率范围内测量探测器响应度。我们介绍了所使用的数据处理方法,并展示了描述正负非线性行为的测量结果。包括非线性特性在内的典型NIST高功率激光探测器校准的扩展不确定度约为1.3%。