Department of Chemistry, IIT Powai, Mumbai-400076, India.
Chem Commun (Camb). 2016 Jul 12;52(58):8972-9008. doi: 10.1039/c6cc01251e.
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
分子纳米磁体包含了一系列具有多种潜在应用的配位化合物。实现这些潜在应用的一个巨大挑战在于控制这些簇的磁性质。微观自旋哈密顿(SH)参数描述了这些簇的磁性质,而控制这些 SH 参数的可行方法是非常需要的。计算工具在这一领域发挥着积极的作用,通过 X 射线结构可以可靠地计算出 SH 参数,如各向同性交换相互作用(J)、各向异性交换相互作用(Jx、Jy、Jz)、双交换相互作用(B)、零场分裂参数(D、E)和 g-张量。在这篇专题文章中,我们试图提供一个分子磁体这些 SH 参数建模的整体视图。J 的确定包括各种类别的分子,从双核和多核 Mn 配合物到 {3d-Gd}、{Gd-Gd}和{Gd-2p}类配合物。各向异性交换耦合的估计包括各向同性金属离子和轨道简并 3d/4d/5d 金属离子之间的交换。双交换部分包含一些混合价系统的说明性示例,而 zfs 参数的估计部分涵盖了一些具有非常大轴向 zfs 参数的单核过渡金属配合物。g-各向异性的计算部分专门涵盖了单核 Dy(III)和 Er(III)单离子磁体的研究。本文中的例子清楚地表明,计算工具不仅有助于解释和合理化观察到的磁性质,而且具有预测新一代 MNMs 的潜力。