Brůža Petr, Lin Huiyun, Vinogradov Sergei A, Jarvis Lesley A, Gladstone David J, Pogue Brian W
Opt Lett. 2016 Jul 1;41(13):2986-9. doi: 10.1364/OL.41.002986.
Light scattering leads to a severe loss of axial and transverse resolution with depth into tissue, limiting accuracy and value of biomedical luminescence imaging techniques. High-resolution imaging beyond a few-millimeter depth is prohibited because diffusive transport dominates beyond a few scattering distances. In this study, light sheet imaging through scattering media is demonstrated using a radiotherapy linear accelerator to deliver well-defined thin scanned sheets of x-rays. These sheets produce Cherenkov light within the medium, which in turn excites luminescence of an optical probe across the sheet plane. This luminescence can then be imaged by an intensified camera positioned perpendicular to the sheet plane. The precise knowledge of the light sheet position within the medium allowed for efficient attenuation correction of the signal with depth as well as spatial deconvolution of the excitation light. Together these methods allowed for the first time, to the best of our knowledge, high-resolution imaging of tissue-equivalent phantoms up to 3 cm thick, yielding the precise position and shape of luminescent lesions located deep in tissue without the need for nonlinear image reconstruction.
光散射会导致随着深入组织,轴向和横向分辨率严重损失,限制了生物医学发光成像技术的准确性和价值。由于扩散传输在几个散射距离之外占主导,所以超过几毫米深度的高分辨率成像受到限制。在本研究中,利用放射治疗线性加速器来传输定义明确的薄扫描X射线片,展示了通过散射介质进行光片成像。这些光片在介质中产生切伦科夫光,进而激发光学探针在光片平面上的发光。然后,这种发光可以由垂直于光片平面放置的增强型相机进行成像。对介质内光片位置的精确了解使得能够对信号随深度进行有效的衰减校正以及对激发光进行空间去卷积。据我们所知,这些方法首次实现了对厚度达3厘米的组织等效体模进行高分辨率成像,能够在无需非线性图像重建的情况下,得出位于组织深处的发光病变的精确位置和形状。