Rey Veronica, Botana Ana M, Alvarez Mercedes, Antelo Alvaro, Botana Luis M
Department Analytical Chemistry, Faculty of Sciences, University of Santiago de Compostela, Lugo 27002, Spain.
CIFGA S.A., Plaza Santo Domingo 20-5ª, Lugo 27001, Spain.
Toxins (Basel). 2016 Jun 28;8(7):196. doi: 10.3390/toxins8070196.
Paralytic shellfish toxins (PST) traditionally have been analyzed by liquid chromatography with either pre- or post-column derivatization and always with a silica-based stationary phase. This technique resulted in different methods that need more than one run to analyze the toxins. Furthermore, tetrodotoxin (TTX) was recently found in bivalves of northward locations in Europe due to climate change, so it is important to analyze it along with PST because their signs of toxicity are similar in the bioassay. The methods described here detail a new approach to eliminate different runs, by using a new porous graphitic carbon stationary phase. Firstly we describe the separation of 13 PST that belong to different groups, taking into account the side-chains of substituents, in one single run of less than 30 min with good reproducibility. The method was assayed in four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Pecten maximus), scallop (Ruditapes decussatus) and oyster (Ostrea edulis). The results for all of the parameters studied are provided, and the detection limits for the majority of toxins were improved with regard to previous liquid chromatography methods: the lowest values were those for decarbamoyl-gonyautoxin 2 (dcGTX2) and gonyautoxin 2 (GTX2) in mussel (0.0001 mg saxitoxin (STX)·diHCl kg(-1) for each toxin), decarbamoyl-saxitoxin (dcSTX) in clam (0.0003 mg STX·diHCl kg(-1)), N-sulfocarbamoyl-gonyautoxins 2 and 3 (C1 and C2) in scallop (0.0001 mg STX·diHCl kg(-1) for each toxin) and dcSTX (0.0003 mg STX·diHCl kg(-1) ) in oyster; gonyautoxin 2 (GTX2) showed the highest limit of detection in oyster (0.0366 mg STX·diHCl kg(-1)). Secondly, we propose a modification of the method for the simultaneous analysis of PST and TTX, with some minor changes in the solvent gradient, although the detection limit for TTX does not allow its use nowadays for regulatory purposes.
麻痹性贝类毒素(PST)传统上通过液相色谱法进行分析,采用柱前或柱后衍生化,且固定相始终为硅胶基。该技术产生了不同的方法,需要不止一次运行来分析毒素。此外,由于气候变化,最近在欧洲北部地区的双壳贝类中发现了河豚毒素(TTX),因此将其与PST一起分析很重要,因为它们在生物测定中的毒性迹象相似。本文所述方法详细介绍了一种新方法,即使用新型多孔石墨化碳固定相来消除不同的运行步骤。首先,我们描述了在不到30分钟的单次运行中,考虑取代基的侧链,对属于不同组的13种PST进行分离,且具有良好的重现性。该方法在四种贝类基质中进行了测定:贻贝(Mytilus galloprovincialis)、蛤(Pecten maximus)、扇贝(Ruditapes decussatus)和牡蛎(Ostrea edulis)。提供了所有研究参数的结果,与之前的液相色谱方法相比,大多数毒素的检测限得到了提高:最低值是贻贝中脱氨甲酰膝沟藻毒素2(dcGTX2)和膝沟藻毒素2(GTX2)的检测限(每种毒素为0.0001 mg 石房蛤毒素(STX)·二盐酸盐 kg(-1)),蛤中脱氨甲酰石房蛤毒素(dcSTX)的检测限(0.0003 mg STX·二盐酸盐 kg(-1)),扇贝中N-磺基甲酰基膝沟藻毒素2和3(C1和C2)的检测限(每种毒素为0.0001 mg STX·二盐酸盐 kg(-1))以及牡蛎中dcSTX的检测限(0.0003 mg STX·二盐酸盐 kg(-1));膝沟藻毒素2(GTX2)在牡蛎中的检测限最高(0.0366 mg STX·二盐酸盐 kg(-1))。其次,我们提出了一种用于同时分析PST和TTX的方法的改进,溶剂梯度有一些微小变化,尽管目前TTX的检测限不允许其用于监管目的。