Paul Melanie Verena, Iyer Srignanakshi, Amerhauser Carmen, Lehmann Martin, van Dongen Joost T, Geigenberger Peter
Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.).
Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
Plant Physiol. 2016 Sep;172(1):141-53. doi: 10.1104/pp.16.00460. Epub 2016 Jul 2.
Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions.
亚组VII乙烯响应因子(ERF-VII)转录因子参与低氧基因表达的调控,并通过N端规则途径的氧依赖分支由蛋白酶体介导的蛋白水解作用进行调节。虽然对ERF-VII的研究主要集中在其调节缺氧基因表达的作用上,但对于这个氧感知系统在调节植物代谢和生长方面的影响却知之甚少。通过比较过表达ERF-VII因子RAP2.12的N端规则敏感和不敏感形式的拟南芥植株,我们提供了证据表明氧依赖的RAP2.12稳定性调节中心代谢过程以维持植物的生长、发育和抗缺氧能力。(1)在常氧条件下,N端规则不敏感的Δ13RAP2.12过表达导致发酵酶活性增加和发酵产物积累增加,同时伴随着腺苷酸能量状态和淀粉水平下降,以及植物生长发育受损,这表明氧调节的RAP2.12降解在防止有氧发酵中起作用。(2)在过表达Δ13RAP2.12的植株中,碳水化合物储备减少也导致抗缺氧能力下降,而外源蔗糖供应可防止这种情况。(3)Δ13RAP2.12过表达导致呼吸速率下降、三羧酸循环中间产物水平变化以及大量氨基酸积累,包括丙氨酸和γ-氨基丁酸,这表明氧调节的RAP2.12丰度在控制三羧酸循环的通量模式中起作用。(4)氨基酸增加伴随着免疫调节代谢物水平升高。这些结果表明,介导RAP2.12降解的氧感知对于在常氧和低氧条件下优化代谢性能、植物生长和发育是不可或缺的。