Suppr超能文献

从局部模式到全局架构:网络拓扑对人类学习的影响

Local Patterns to Global Architectures: Influences of Network Topology on Human Learning.

作者信息

Karuza Elisabeth A, Thompson-Schill Sharon L, Bassett Danielle S

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Trends Cogn Sci. 2016 Aug;20(8):629-640. doi: 10.1016/j.tics.2016.06.003. Epub 2016 Jun 29.

Abstract

A core question in cognitive science concerns how humans acquire and represent knowledge about their environments. To this end, quantitative theories of learning processes have been formalized in an attempt to explain and predict changes in brain and behavior. We connect here statistical learning approaches in cognitive science, which are rooted in the sensitivity of learners to local distributional regularities, and network science approaches to characterizing global patterns and their emergent properties. We focus on innovative work that describes how learning is influenced by the topological properties underlying sensory input. The confluence of these theoretical approaches and this recent empirical evidence motivate the importance of scaling-up quantitative approaches to learning at both the behavioral and neural levels.

摘要

认知科学中的一个核心问题是人类如何获取并表征关于其所处环境的知识。为此,学习过程的定量理论已被形式化,旨在解释和预测大脑及行为的变化。我们在此将认知科学中的统计学习方法(其根源在于学习者对局部分布规律的敏感性)与用于刻画全局模式及其涌现特性的网络科学方法联系起来。我们关注那些描述学习如何受感觉输入潜在拓扑特性影响的创新性研究。这些理论方法与近期实证证据的融合,凸显了在行为和神经层面扩大学习定量方法规模的重要性。

相似文献

2
The Value of Statistical Learning to Cognitive Network Science.统计学习对认知网络科学的价值。
Top Cogn Sci. 2022 Jan;14(1):78-92. doi: 10.1111/tops.12558. Epub 2021 Jun 24.
3
Implicit Statistical Learning: A Tale of Two Literatures.内隐统计学习:两种文献的故事。
Top Cogn Sci. 2019 Jul;11(3):468-481. doi: 10.1111/tops.12332. Epub 2018 Apr 6.
8
Scaling laws in cognitive sciences.认知科学中的标度律。
Trends Cogn Sci. 2010 May;14(5):223-32. doi: 10.1016/j.tics.2010.02.005. Epub 2010 Apr 1.

引用本文的文献

4
The successor representation subserves hierarchical abstraction for goal-directed behavior.后继表示服务于目标导向行为的层次抽象。
PLoS Comput Biol. 2024 Feb 20;20(2):e1011312. doi: 10.1371/journal.pcbi.1011312. eCollection 2024 Feb.
5
Causation in neuroscience: keeping mechanism meaningful.神经科学中的因果关系:保持机制的意义。
Nat Rev Neurosci. 2024 Feb;25(2):81-90. doi: 10.1038/s41583-023-00778-7. Epub 2024 Jan 11.
6
Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts.精神分裂症语义空间轨迹与涟漪爆发的关系。
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2305290120. doi: 10.1073/pnas.2305290120. Epub 2023 Oct 10.
8
Exploration patterns shape cognitive map learning.探索模式塑造认知图学习。
Cognition. 2023 Apr;233:105360. doi: 10.1016/j.cognition.2022.105360. Epub 2022 Dec 20.
9
Optimizing the human learnability of abstract network representations.优化抽象网络表示的人类可学习性。
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2121338119. doi: 10.1073/pnas.2121338119. Epub 2022 Aug 22.
10
A Two-Parameter Fractional Tsallis Decision Tree.一种双参数分数阶Tsallis决策树。
Entropy (Basel). 2022 Apr 19;24(5):572. doi: 10.3390/e24050572.

本文引用的文献

3
4
Network mechanisms of intentional learning.有意学习的网络机制。
Neuroimage. 2016 Feb 15;127:123-134. doi: 10.1016/j.neuroimage.2015.11.060. Epub 2015 Dec 4.
5
Modular Brain Networks.模块化脑网络
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.
7
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.人类执行认知过程中额叶脑网络的动态重构
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
9
A Complex Network Approach to Distributional Semantic Models.一种用于分布式语义模型的复杂网络方法。
PLoS One. 2015 Aug 21;10(8):e0136277. doi: 10.1371/journal.pone.0136277. eCollection 2015.
10
Dimension-based statistical learning of vowels.基于维度的元音统计学习
J Exp Psychol Hum Percept Perform. 2015 Dec;41(6):1783-98. doi: 10.1037/xhp0000092. Epub 2015 Aug 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验