Suppr超能文献

内隐统计学习:两种文献的故事。

Implicit Statistical Learning: A Tale of Two Literatures.

机构信息

Department of Psychology, Cornell University.

Interacting Minds Centre and School of Communication and Culture, Aarhus University.

出版信息

Top Cogn Sci. 2019 Jul;11(3):468-481. doi: 10.1111/tops.12332. Epub 2018 Apr 6.

Abstract

Implicit learning and statistical learning are two contemporary approaches to the long-standing question in psychology and cognitive science of how organisms pick up on patterned regularities in their environment. Although both approaches focus on the learner's ability to use distributional properties to discover patterns in the input, the relevant research has largely been published in separate literatures and with surprisingly little cross-pollination between them. This has resulted in apparently opposing perspectives on the computations involved in learning, pitting chunk-based learning against probabilistic learning. In this paper, I trace the nearly century-long historical pedigree of the two approaches to learning and argue for their integration under the heading of "implicit statistical learning." Building on basic insights from the memory literature, I sketch a framework for statistically based chunking that aims to provide a unified basis for understanding implicit statistical learning.

摘要

内隐学习和统计学习是心理学和认知科学中长期存在的问题的两种当代方法,这些问题涉及生物如何在其环境中发现模式规律。尽管这两种方法都侧重于学习者利用分布特性在输入中发现模式的能力,但相关研究主要发表在不同的文献中,彼此之间的交叉授粉很少。这导致了学习中涉及的计算方法明显存在对立观点,将基于块的学习与概率学习相对立。在本文中,我追溯了这两种学习方法近一个世纪的历史渊源,并主张将它们整合在“内隐统计学习”的标题下。基于记忆文献的基本见解,我勾勒了一个基于统计的分块框架,旨在为理解内隐统计学习提供一个统一的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验