Suppr超能文献

由两个独立的妇科中心进行的 IOTA ADNEX 模型的外部验证。

External validation of the IOTA ADNEX model performed by two independent gynecologic centers.

机构信息

Division of Gynecologic Surgery, Poznan University of Medical Sciences, Poland.

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland.

出版信息

Gynecol Oncol. 2016 Sep;142(3):490-5. doi: 10.1016/j.ygyno.2016.06.020. Epub 2016 Jun 30.

Abstract

OBJECTIVES

The external, two-center validation of the IOTA ADNEX model for differential diagnosis of adnexal tumors.

METHODS

A total of 204 patients with adnexal masses (134 benign and 70 malignant) treated at the Division of Gynecologic Surgery, Poznan University of Medical Sciences, Poland (Center I), and 123 patients (89 benign and 34 malignant) from the Department of Obstetrics and Gynecology, Clinica Universidad de Navarra, University of Navarra School of Medicine, Pamplona, Spain (Center II), were enrolled into the study.

RESULTS

ADNEX achieved high accuracy in discriminating between malignant and benign ovarian tumors in both centers (79.9% and 81.3% in Centers I and II, respectively). Multiclass accuracy was substantially lower than in binary classification (malignant vs. benign): 64.2% and 74.0% in Centers I and II, respectively. Sensitivity and specificity for the diagnosis of specific tumor types in Center I were as follows: benign tumors - 72.4% and 94.3%; borderline tumors - 33.3% and 87.0%, stage I ovarian cancers - 00.0% and 91.8%; stage II-IV ovarian cancers - 68.2% and 83.1%; and metastatic tumors - 00.0% and 99.5%. Sensitivity and specificity in Center II were as follows: benign tumors - 75.3% and 97.1%; borderline tumors - 50.0% and 88.2%, stage I ovarian cancers - 40.0% and 97.5%; stage II-IV ovarian cancers - 95.0% and 88.3%; and metastatic tumors - 20.0% and 98.3%.

CONCLUSIONS

ADNEX is characterized by very high accuracy in differentiating between malignant and benign adnexal tumors. However, prediction of ovarian tumor types could be more accurate.

摘要

目的

对 IOTA ADNEX 模型进行外部、双中心验证,以辅助鉴别附件肿瘤。

方法

本研究纳入了波兰波兹南医科大学妇科手术科的 204 名附件肿块患者(134 例良性,70 例恶性)(中心 I),以及西班牙纳瓦拉大学临床医学院妇产科的 123 名患者(89 例良性,34 例恶性)(中心 II)。

结果

ADNEX 在两个中心对良恶性卵巢肿瘤的鉴别均具有较高的准确性(中心 I 和 II 的准确率分别为 79.9%和 81.3%)。多类准确率显著低于二分类(恶性 vs. 良性):中心 I 和 II 的准确率分别为 64.2%和 74.0%。中心 I 中特定肿瘤类型的诊断灵敏度和特异度如下:良性肿瘤为 72.4%和 94.3%;交界性肿瘤为 33.3%和 87.0%;I 期卵巢癌为 0.0%和 91.8%;II-IV 期卵巢癌为 68.2%和 83.1%;转移性肿瘤为 0.0%和 99.5%。中心 II 的灵敏度和特异度如下:良性肿瘤为 75.3%和 97.1%;交界性肿瘤为 50.0%和 88.2%;I 期卵巢癌为 40.0%和 97.5%;II-IV 期卵巢癌为 95.0%和 88.3%;转移性肿瘤为 20.0%和 98.3%。

结论

ADNEX 鉴别良恶性附件肿瘤的准确率非常高。然而,对卵巢肿瘤类型的预测可能更准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验