Suppr超能文献

微观结构导向的纤维束成像:陷阱与开放挑战。

Microstructure Informed Tractography: Pitfalls and Open Challenges.

作者信息

Daducci Alessandro, Dal Palú Alessandro, Descoteaux Maxime, Thiran Jean-Philippe

机构信息

Signal Processing Lab, Electrical Engineering, École Polytechnique Fédérale de LausanneLausanne, Switzerland; Radiology Department, University Hospital CenterLausanne, Switzerland; Sherbrooke Connectivity Imaging Lab, Computer Science, Université de SherbrookeSherbrooke, QC, Canada.

Mathematics and Computer Science Department, University of Parma Parma, Italy.

出版信息

Front Neurosci. 2016 Jun 6;10:247. doi: 10.3389/fnins.2016.00247. eCollection 2016.

Abstract

One of the major limitations of diffusion MRI tractography is that the fiber tracts recovered by existing algorithms are not truly quantitative. Local techniques for estimating more quantitative features of the tissue microstructure exist, but their combination with tractography has always been considered intractable. Recent advances in local and global modeling made it possible to fill this gap and a number of promising techniques for microstructure informed tractography have been suggested, opening new and exciting perspectives for the quantification of brain connectivity. The ease-of-use of the proposed solutions made it very attractive for researchers to include such advanced methods in their analyses; however, this apparent simplicity should not hide some critical open questions raised by the complexity of these very high-dimensional problems, otherwise some fundamental issues may be pushed into the background. The aim of this article is to raise awareness in the diffusion MRI community, notably researchers working on brain connectivity, about some potential pitfalls and modeling choices that make the interpretation of the outcomes from these novel techniques rather cumbersome. Through a series of experiments on synthetic and real data, we illustrate practical situations where erroneous and severely biased conclusions may be drawn about the connectivity if these pitfalls are overlooked, like the presence of partial/missing/duplicate fibers or the critical importance of the diffusion model adopted. Microstructure informed tractography is a young but very promising technology, and by acknowledging its current limitations as done in this paper, we hope our observations will trigger further research in this direction and new ideas for truly quantitative and biologically meaningful analyses of the connectivity.

摘要

扩散磁共振成像纤维束示踪技术的主要局限性之一在于,现有算法恢复的纤维束并非真正定量的。存在用于估计组织微观结构更多定量特征的局部技术,但其与纤维束示踪的结合一直被认为难以处理。局部和全局建模的最新进展使得填补这一空白成为可能,并且已经提出了许多用于基于微观结构的纤维束示踪的有前景的技术,为脑连接性的量化开辟了新的、令人兴奋的前景。所提出解决方案的易用性使其对研究人员极具吸引力,促使他们在分析中纳入此类先进方法;然而,这种表面上的简单性不应掩盖这些高维问题的复杂性所引发的一些关键开放性问题,否则一些基本问题可能被忽视。本文的目的是提高扩散磁共振成像领域,尤其是从事脑连接性研究的人员,对一些潜在陷阱和建模选择的认识,这些陷阱和选择使得对这些新技术结果的解释相当繁琐。通过对合成数据和真实数据的一系列实验,我们说明了如果忽视这些陷阱,例如存在部分/缺失/重复纤维或所采用扩散模型的关键重要性,可能会对连接性得出错误和严重有偏差结论的实际情况。基于微观结构的纤维束示踪是一项年轻但非常有前景的技术,通过像本文这样认识到其当前局限性,我们希望我们的观察将引发该方向的进一步研究,并为连接性的真正定量和生物学上有意义的分析带来新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b6/4893481/2ce1ef028ba8/fnins-10-00247-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验