Departments of Chemistry and Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Building 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany.
Struct Dyn. 2015 Aug 18;2(5):054302. doi: 10.1063/1.4928706. eCollection 2015 Sep.
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.
我们展示了一种晶体学芯片,可在微焦点同步加速器光束线和 X 射线自由电子激光(X-FEL)源处实现原位室温晶体学。与其他原位方法相比,我们观察到极低的背景和高衍射数据质量。该芯片设计坚固耐用,可快速高效地加载数千个小晶体。能够将大量的蛋白质晶体在室温下以高效率装入预定位置,这使得使用微焦点同步加速器光束线进行高通量自动化连续晶体学成为可能。此外,我们还展示了该芯片在加利福尼亚州门洛帕克市的林克莱特相干光源(LCLS)上进行飞秒时间分辨连续晶体学的应用。该芯片概念允许从每个晶体中获取多个图像,从而可以差分检测衍射强度的变化,以获得高信噪比并充分利用 XFEL 的时间分辨率能力。