Suppr超能文献

HIV-1的潜伏储存库:免疫记忆和克隆扩增如何促成HIV-1的持续存在。

The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence.

作者信息

Murray Alexandra J, Kwon Kyungyoon J, Farber Donna L, Siliciano Robert F

机构信息

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;

Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and.

出版信息

J Immunol. 2016 Jul 15;197(2):407-17. doi: 10.4049/jimmunol.1600343.

Abstract

Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.

摘要

针对HIV-1感染的联合抗逆转录病毒疗法(ART)可将血浆病毒水平降低至临床检测方法的检测限以下。然而,即使通过ART长期抑制病毒复制,治疗中断后病毒血症仍会迅速反弹。因此,ART无法治愈。治愈的主要障碍是静息记忆CD4(+) T细胞中潜伏的HIV-1储存库异常稳定。在本综述中,我们探讨了潜伏储存库异常稳定的原因。其稳定性似乎并非源于新感染事件的补充,而是为免疫记忆提供支持的正常生理过程。驱动受感染细胞克隆扩增的增殖过程尤为重要。最近的证据表明,在一些受感染细胞中,增殖是前病毒整合到与细胞生长相关的宿主基因中的结果。通过靶向潜伏储存库来治愈HIV-1感染的努力可能需要考虑潜伏感染细胞增殖的可能性。

相似文献

2
Stable Phenotypic Changes of the Host T Cells Are Essential to the Long-Term Stability of Latent HIV-1 Infection.
J Virol. 2015 Jul;89(13):6656-72. doi: 10.1128/JVI.00571-15. Epub 2015 Apr 15.
3
Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals.
PLoS Pathog. 2019 Oct 14;15(10):e1008074. doi: 10.1371/journal.ppat.1008074. eCollection 2019 Oct.
4
The forces driving clonal expansion of the HIV-1 latent reservoir.
Virol J. 2020 Jan 7;17(1):4. doi: 10.1186/s12985-019-1276-8.
6
Targeting the Latent Reservoir for HIV-1.
Immunity. 2018 May 15;48(5):872-895. doi: 10.1016/j.immuni.2018.04.030.
7
Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir.
Elife. 2020 Sep 29;9:e60933. doi: 10.7554/eLife.60933.
8
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 and TIGIT CD4 T Cells.
J Virol. 2019 May 1;93(10). doi: 10.1128/JVI.02086-18. Print 2019 May 15.
9
Cells producing residual viremia during antiretroviral treatment appear to contribute to rebound viremia following interruption of treatment.
PLoS Pathog. 2020 Aug 25;16(8):e1008791. doi: 10.1371/journal.ppat.1008791. eCollection 2020 Aug.

引用本文的文献

2
Selective decline of intact HIV reservoirs during the first decade of ART followed by stabilization in memory T cell subsets.
AIDS. 2025 Jun 1;39(7):798-811. doi: 10.1097/QAD.0000000000004160. Epub 2025 Feb 20.
3
SHIV remission in macaques with early treatment initiation and ultra long-lasting antiviral activity.
Nat Commun. 2024 Dec 4;15(1):10550. doi: 10.1038/s41467-024-54783-0.
4
The cell biology of HIV-1 latency and rebound.
Retrovirology. 2024 Apr 5;21(1):6. doi: 10.1186/s12977-024-00639-w.
5
HIV Expression in Infected T Cell Clones.
Viruses. 2024 Jan 11;16(1):108. doi: 10.3390/v16010108.
6
A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells.
Cell Chem Biol. 2023 Dec 21;30(12):1617-1633.e9. doi: 10.1016/j.chembiol.2023.11.009.
7
Strategies for HIV-1 suppression through key genes and cell therapy.
Front Med (Lausanne). 2023 Nov 29;10:1259995. doi: 10.3389/fmed.2023.1259995. eCollection 2023.
8
Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure.
Curr HIV/AIDS Rep. 2023 Dec;20(6):428-439. doi: 10.1007/s11904-023-00674-w. Epub 2023 Nov 13.
9
10
CD4 T cell memory.
Nat Immunol. 2023 Jun;24(6):903-914. doi: 10.1038/s41590-023-01510-4. Epub 2023 May 8.

本文引用的文献

1
Macrophages sustain HIV replication in vivo independently of T cells.
J Clin Invest. 2016 Apr 1;126(4):1353-66. doi: 10.1172/JCI84456. Epub 2016 Mar 7.
2
Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1883-8. doi: 10.1073/pnas.1522675113. Epub 2016 Feb 8.
3
Persistent HIV-1 replication maintains the tissue reservoir during therapy.
Nature. 2016 Feb 4;530(7588):51-56. doi: 10.1038/nature16933. Epub 2016 Jan 27.
5
HIV-1 Eradication: Early Trials (and Tribulations).
Trends Mol Med. 2016 Jan;22(1):10-27. doi: 10.1016/j.molmed.2015.11.004. Epub 2015 Dec 12.
7
Progress Toward HIV Eradication: Case Reports, Current Efforts, and the Challenges Associated with Cure.
Annu Rev Med. 2016;67:215-28. doi: 10.1146/annurev-med-011514-023043. Epub 2015 Nov 2.
8
Blood-Derived CD4 T Cells Naturally Resist Pyroptosis during Abortive HIV-1 Infection.
Cell Host Microbe. 2015 Oct 14;18(4):463-70. doi: 10.1016/j.chom.2015.09.010.
9
Extremely High Mutation Rate of HIV-1 In Vivo.
PLoS Biol. 2015 Sep 16;13(9):e1002251. doi: 10.1371/journal.pbio.1002251. eCollection 2015.
10
A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa.
N Engl J Med. 2015 Aug 27;373(9):808-22. doi: 10.1056/NEJMoa1507198. Epub 2015 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验