Joesch Maximilian, Mankus David, Yamagata Masahito, Shahbazi Ali, Schalek Richard, Suissa-Peleg Adi, Meister Markus, Lichtman Jeff W, Scheirer Walter J, Sanes Joshua R
Center for Brain Science, Harvard University, Cambridge, United States.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.
Elife. 2016 Jul 7;5:e15015. doi: 10.7554/eLife.15015.
Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identify neurons, and developed a protocol that enhances the electron-density of the labeled cells while retaining the quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by two orders of magnitude, facilitating directed inquiry of circuit motifs.
目前,解析神经回路中突触连接的模式需要连续切片电子显微镜技术。然而,完整的回路重建速度极其缓慢,对于许多目的(如比较多只动物之间的神经元结构和连接性)而言可能并非必要。在此,我们提出一种替代策略,即对特定神经元类型进行靶向重建。我们使用病毒载体递送过氧化物酶衍生物,该衍生物催化产生电子致密示踪剂,以对神经元进行基因鉴定,并开发了一种方案,可在保留超微结构质量的同时提高标记细胞的电子密度。标记神经元的高对比度实现了两项加快数据采集的创新:对从快速获取的低分辨率重建中选择的区域进行靶向高分辨率重新成像,以及一种无监督分割算法。该流程将成像和重建时间减少了两个数量级,便于对回路基序进行定向探究。