Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
Google Research, Mountain View, CA, USA.
Nat Commun. 2024 Aug 5;15(1):6648. doi: 10.1038/s41467-024-50411-z.
Mapping neuronal networks is a central focus in neuroscience. While volume electron microscopy (vEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide molecular information to identify cell types or functions. We developed an approach that uses fluorescent single-chain variable fragments (scFvs) to perform multiplexed detergent-free immunolabeling and volumetric-correlated-light-and-electron-microscopy on the same sample. We generated eight fluorescent scFvs targeting brain markers. Six fluorescent probes were imaged in the cerebellum of a female mouse, using confocal microscopy with spectral unmixing, followed by vEM of the same sample. The results provide excellent ultrastructure superimposed with multiple fluorescence channels. Using this approach, we documented a poorly described cell type, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
绘制神经元网络是神经科学的一个核心焦点。虽然体积电子显微镜(vEM)可以揭示神经元网络的精细结构(连接组学),但它不能提供分子信息来识别细胞类型或功能。我们开发了一种方法,该方法使用荧光单链可变片段(scFv)在同一样品上进行多重非变性免疫标记和容积相关的光和电子显微镜。我们生成了针对大脑标记物的八种荧光 scFv。使用共聚焦显微镜进行光谱解混,对雌性小鼠小脑中的六种荧光探针进行成像,然后对同一样品进行 vEM。结果提供了极好的超微结构,叠加了多个荧光通道。使用这种方法,我们记录了一种描述不佳的细胞类型、两种苔藓纤维末梢以及一种离子通道的亚细胞定位。由于 scFv 可以从现有的单克隆抗体中衍生出来,因此可以生成数百种这样的探针,以实现连接组学研究的分子叠加。