Kreis Karsten, Potestio Raffaello, Kremer Kurt, Fogarty Aoife C
Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.
Graduate School Materials Science in Mainz , Staudinger Weg 9, 55128 Mainz, Germany.
J Chem Theory Comput. 2016 Aug 9;12(8):4067-81. doi: 10.1021/acs.jctc.6b00440. Epub 2016 Jul 20.
In adaptive resolution simulations, different regions of a simulation box are modeled with different levels of detail. Particles change their resolution on-the-fly when traveling from one subregion to the other. This method is particularly useful for studying multiscale systems in which effects on a broad range of length and time scales play a role. Until now, the geometry of the high-resolution region has been limited to simple geometries of spherical, cuboid, or cylindrical form, whose shape does not change during the simulation. However, many phenomena involve changes in size and shape of system components, for example, protein folding, polymer collapse, nucleation, and crystallization. In this work, we develop a scheme that uses a series of overlapping spheres to allow for an arbitrary division of space into domains of different levels of resolution. Furthermore, the geometry is automatically adjusted on-the-fly during the simulation according to changes in size and shape of, for example, a solvated macromolecule within the high-resolution region. The proposed approach is validated on liquid water. We then simulate the folding of an atomistically detailed polypeptide solvated in a shell of atomistic water that changes shape as the peptide conformation changes. We demonstrate that the peptide folding process is unperturbed by the use of our methodology.
在自适应分辨率模拟中,模拟盒的不同区域采用不同的细节级别进行建模。粒子在从一个子区域移动到另一个子区域时会实时改变其分辨率。这种方法对于研究多尺度系统特别有用,在多尺度系统中,广泛的长度和时间尺度上的效应都发挥着作用。到目前为止,高分辨率区域的几何形状仅限于球形、长方体形或圆柱形等简单几何形状,其形状在模拟过程中不会改变。然而,许多现象涉及系统组件的尺寸和形状变化,例如蛋白质折叠、聚合物塌陷、成核和结晶。在这项工作中,我们开发了一种方案,该方案使用一系列重叠球体,以便将空间任意划分为不同分辨率级别的区域。此外,在模拟过程中,几何形状会根据高分辨率区域内例如溶剂化大分子的尺寸和形状变化实时自动调整。所提出的方法在液态水上得到了验证。然后,我们模拟了溶解在原子水平的水壳中的原子级详细多肽的折叠过程,随着肽构象的变化,水壳的形状也会改变。我们证明,肽的折叠过程不受我们方法的干扰。