Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.
Sci Rep. 2017 Jul 6;7(1):4775. doi: 10.1038/s41598-017-05109-2.
While densely packed DNA arrays are known to exhibit hexagonal and orthorhombic local packings, the detailed mechanism governing the associated phase transition remains rather elusive. Furthermore, at high densities the atomistic resolution is paramount to properly account for fine details, encompassing the DNA molecular order, the contingent ordering of counterions and the induced molecular ordering of the bathing solvent, bringing together electrostatic, steric, thermal and direct hydrogen-bonding interactions, resulting in the observed osmotic equation of state. We perform a multiscale simulation of dense DNA arrays by enclosing a set of 16 atomistically resolved DNA molecules within a semi-permeable membrane, allowing the passage of water and salt ions, and thus mimicking the behavior of DNA arrays subjected to external osmotic stress in a bathing solution of monovalent salt and multivalent counterions. By varying the DNA density, local packing symmetry, and counterion type, we obtain osmotic equation of state together with the hexagonal-orthorhombic phase transition, and full structural characterization of the DNA subphase in terms of its positional and angular orientational fluctuations, counterion distributions, and the solvent local dielectric response profile with its order parameters that allow us to identify the hydration force as the primary interaction mechanism at high DNA densities.
尽管已知密集堆积的 DNA 阵列表现出六方和正交的局部堆积,但控制相关相变的详细机制仍然相当难以捉摸。此外,在高密度下,原子分辨率对于正确考虑细微细节至关重要,包括 DNA 分子的有序性、抗衡离子的 contingent 有序性以及沐浴溶剂的诱导分子有序性,从而汇集静电、位阻、热和直接氢键相互作用,导致观察到的渗透压状态方程。我们通过在半透膜内封装一组 16 个原子分辨率的 DNA 分子,对密集 DNA 阵列进行了多尺度模拟,允许水分子和盐离子通过,从而模拟了在含有单价盐和多价抗衡离子的沐浴溶液中受到外部渗透压的 DNA 阵列的行为。通过改变 DNA 密度、局部堆积对称性和抗衡离子类型,我们获得了渗透压状态方程以及六方-正交相转变,以及 DNA 亚相的完整结构特征,包括其位置和角度取向波动、抗衡离子分布以及溶剂局部介电响应轮廓及其序参数,使我们能够确定水合力是在高 DNA 密度下的主要相互作用机制。